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Summary
Human ageing is by far one of the most complex biological phenomena which affects all cells 
and tissues, leading to gradual loss of function, decrement in proliferative activity, and im-
paired cellular response. One of the key mechanisms of cellular ageing is proliferative stress 
which results in telomeric attrition, DNA damage, and deposition of senescence-associated 
proteins. Allogeneic hematopoietic cells transplantation (allo-HCT) serves as a good model for 
cellular ageing. Here we review the ageing of the immune system and the impact of proliferative 
stress on both innate and adaptive immune response, reflected by immunosenescence and in-
flammageing phenomena, in the context of iatrogenic proliferative stress induced by allo-HCT.
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Introduction

Ageing is a universal biological phenomenon 
that affects almost all cells in most living orga-
nisms. However, no universal definition of ageing 
exists due to its complexity. It can be described 
as a highly heterogeneous process that affects 
all tissues and systems, leading to a gradual loss 
of function. In the context of cellular ageing, it is 
characterized by dysregulation of the mitochon-
dria, following increased reactive oxygen species 
(ROS) production, DNA damage, and telomeric 
shortening. Nowadays, there is a growing tendency 
to perceive ageing not only as a detrimental pro-
cess but also as a constant adaptation to changing 
internal environment of the organism (“adaptage 
theory”) [1]. The notion of “adaptage theory” was 
developed by prof. Tamas Fulop and encompasses 

all age-associated changes of the immune system 
which serves as an adaptation to changing internal 
conditions of the organism in contrast to traditional 
conception of those changes, perceived as mainly 
detrimental [1, 2].

To better understand that concept we need 
to go back to the first studies that originated the 
field of ageing on a molecular level. Since the 
1960’s we know that cells divide until they reach 
so-called Hayflick limit, which is a certain, finite 
number of cellular divisions, before entering se-
nescence. This is caused by telomeric shortening 
occurring with each cellular division [3, 4]. When 
telomeres shorten to a certain length, measured 
in base pairs (bp), further divisions are impossible 
without damaging the cell’s coding DNA. Reaching 
the Hayflick limit is therefore considered parallel 
with entering cellular senescence or apoptosis 

Correspondence address: prof. dr hab. n. med. Jan M. Zaucha, Center of Non-invasive Medicine,  
ul. Smoluchowskiego 17, 80–214 Gdańsk, Poland, phone: 58 584 43 40, faks: 58 584 43 50, e-mail: jzaucha@gumed.edu.pl 
Translation: lek. Michał Czarnogórski
Received: 11.03.2023          Accepted: 03.04.2023          Early publication date: 27.04.2023

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to down-
load articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

https://orcid.org/0000-0003-3186-6088
https://orcid.org/0000-0003-2906-1109
https://orcid.org/0000-0002-0986-8936
mailto:jzaucha@gumed.edu.pl


92

Journal of Transfusion Medicine 2023, vol. 16, no. 2

https://journals.viamedica.pl/journal_of_transfusion_medicine

[5]. One of the well-established explanations of 
this phenomenon may be the impaired repair of 
telomeric DNA, due to high demand on the repair 
machinery, caused by damage to DNA by ROS. This 
is consistent with the assumption of Olovnikov [6]  
who proposed the “theory of marginotomy” which 
postulates shortening of the replica as compared 
to the DNA template. This has directly led to the 
discovery of telomeres. The two studies were 
a molecular basis for the discovery of the cellular 
senescence phenomenon. 

In this review, we would like to focus on 
the ageing of one of the crucial regulatory sy-
stems, namely the immune system. A thorough  
understanding of the ageing of the immune system 
is crucial for adjustment of the treatment for aged 
individuals in the future and further development 
of personalized treatment that takes into consi-
deration not only genomics but also the immune 
profile. However, the main purpose of our review 
is not to find the potential therapeutic molecular 
targets but to better understand how proliferative 
stress, which is the common denominator of many 
stressors, influences the immune system, leading 
to ageing and age-related changes. 

The ageing of the immune system consists 
of two phenomena, mutually connected, namely 
immunosenescence and inflammageing. The im-
munosenescence is a plain decline in many im-
mune parameters predominantly concerning the 
adaptive immunity, among others, the number of 
TCD4+, expression of CD28, and naïve TCD4+ 
cells, whereas inflammageing is a chronic, sterile, 
non-infectious, low-grade inflammation charac-
teristic for the elderly [7]. It is caused by the 
accumulation of proinflammatory factors and the 
change of the cell’s (T-cells included) phenotype 
to proinflammatory one, which occurs with ageing 
[8]. Both inflammageing and immunosenescence 
play major role in the development of age-related 
diseases [9], however, recent findings suggest that 
they may also serve as an adaptation process in the 
life of an individual. Moreover, it remains unclear 
whether quantitative and qualitative changes in the 
immune cells are the result of the ageing process 
or an adaptation to life-long exposure to pathogens 
[10]. Until recently, it was assumed that ageing 
leads to age-related diseases (ARD’s), such as car-
diovascular and neurodegenerative diseases. Their 
occurrence was correlated with age-related chan-
ges in the immune system (immunosenescence). 

Vaccine response of the elderly remains ade-
quate when compared with young subjects [11] as 
well as response to immune checkpoint inhibitors 

even in old age [12]. Therefore, age-related chan-
ges in the immune system reflect rather its adap-
tation [7] to the pressure of environmental factors.

Almost all aforementioned changes in the 
immune parameters seem to have one common 
denominator, which is the proliferative stress. It 
can be simply described as the increased demand 
for cellular replication due to the need to fight 
pathogens, autoimmune processes, wound hea-
ling, growth, replacement of senescent cells and 
regeneration of hematopoiesis in case of allogeneic 
hematopoietic cell transplantation (allo-HCT).

The allo-HCT creates an immense demand for 
cellular replication since a very small population 
of hematopoietic progenitors must reconstitute 
functional hematopoiesis in the transplant reci-
pient. It implicates immense proliferative stress 
to hematopoietic cells in general and specifically 
to lymphocytes. Therefore, in theory, it must 
lead to telomeric shortening and should increase 
senescence. 

Innate immune response  
and inflammageing

Inflammageing is considered to be the phy-
siological response to antigenic stress over the 
lifespan of an individual and might be considered 
beneficial as long as it remains balanced by anti-
-inflammatory mechanisms (such as lipoxin A4, 
prostanoids, adenosine, nitric oxide and annexin) as 
shown in some recent studies [13, 14]. Low-grade 
proinflammatory state is not only commonly found 
in centenarians but also correlates strongly with 
longevity as shown by Arrai et al. [15], Witkowski 
et al. [16] and Fulop et al. [17]. It is suggested that 
it is epigenetically regulated [18]. The consequence 
of chronic low-grade inflammation is a decrease in 
the function of the innate immune system called 
immune paralysis [19], which leads to increased 
protection against self-inflicted damage (e.g. au-
toimmune diseases) at the expense of decreased 
protection against PAMPs (pathogen-associated 
molecular patterns) and DAMPs (danger-associa-
ted molecular patterns). 

With ageing, the need for more economical 
energy expenditure increases, as reflected by chan-
ges in the innate immune system, which gradually 
becomes more important than senescing adaptive 
immunity. In aged individuals, this can be reflected 
by the phenotype shift from macrophages M1 (pro-
inflammatory) to M2, which promotes angiogenesis 
and cancer growth [20]. A gradual decrement in 
antigen presenting cells (APC’s) in aged individuals 
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is observed, which in addition are characterized by 
impaired antigen presentation and TCD4+ acti-
vation [21]. There is evidence that those innate 
immunity cells, even in the quiescent state, are 
able to produce proinflammatory cytokines, which 
would contribute to increased inflammageing, 
portraying the mutual interplay between innate 
and adaptive immune systems. Moreover, it would 
indirectly account for significant basal activation 
of APC’s in older individuals [22]. There is also 
some data on the impact of the innate response 
on adaptive immune response with ageing which 
could be well exemplified by the down-regulation 
of CD28 expression in CD4+T cells, which results 
in decreased clonal expansion of those cells [23].

Therefore, inflammageing may be interpreted 
not only as increased concentrations of proinflam-
matory cytokines (Il-1, Il-4, Il-6, TNF-a, Il-17F 
and others) but as a complex interplay between 
proinflammatory and anti-inflammatory proteins 
and qualitative and quantitative changes in innate 
immune cells phenotype.

Adaptive immune system  
and immunosenescence

Immunosenescence is a decline in many im-
mune parameters of aged individuals when com-
pared to young healthy subjects. It is considered 
detrimental due to the accumulation of proinflam-
matory factors as well as the development of 
inflammageing [2]. However, from the evolutionary 
perspective, those changes can be considered adap-
tive (among others, increment in central memory 
and effector memory T-cells counts and increased 
percentage of T cytotoxic cells). The most impor-
tant changes in adaptive immunity occurring with 
ageing are decrement in the proportion of naïve 
TCD8+ and TCD4+ due to thymic involution, loss 
of CD28 antigen, and an increase of the number of 
T central memory (Tcm) and T effector memory 
(Tem) expressing either CD8 or CD4 antigens [24, 25]. 
Especially terminally differentiated effector memo-
ry (TEMRA) CD8+ T cells increase in number and 
percentage. That shift is commonly explained as 
a result of chronic antigenic stimulation throughout 
the lifespan of an individual, with the pivotal role 
of CMV infection [26]. Inverted CD4+/CD8+ ratio 
is also a common finding in the elderly [27, 28].

Ageing of the immune system is associated 
with gradual involution of the thymus [29, 30]. Thy-
mic involution is an evolutionary adaptation since 
its high metabolic activity is energy-consuming. 
However, it leads to a decrease in the production of 

naïve T cells [31] and, therefore, a decrease in TCR 
repertoire although, decrease in TCR repertoire 
is also affected by clonal selection of the T-cells. 
Recent findings, however, are contradictory [32]. 
It has been postulated that aged organism is well 
adapted to fight mainly known pathogens which 
it had encountered over the years, whereas the 
demand for new pathogens recognition is scarce. 
Furthermore, an increased percentage of Tcm 
and Tem cells serve the purpose of ameliorating 
antipathogenic response [33]. 

As mentioned above, with ageing, the per-
centage of TCD8+ cells increases (though their 
count decreases). Those cells play a pivotal role in 
direct response against pathogens by elimination of 
virally-infected and cancer cells in the elderly. Sur-
prisingly, recent data suggest that the increment 
of naïve TCD8+ percentage is not associated with 
prolonged lifespan [34]. 

Another factor that influences the immunop-
henotype of aged individuals is cytomegalovirus 
(CMV) infection. CMV is not only detrimental, as 
it was thought to be the main cause of age-related 
immune changes, but according to novel studies, 
it may be the main stimulatory factor that sustains 
immune response for e.g. vaccination [35]. Howe-
ver, it has been proven that CMV infection does not 
influence the longevity of the aged individuals [36]. 

With ageing, considerable change in the secre-
tory phenotype of the T-cells occurs. It is cha-
racterized by the secretion of pro-inflammatory 
molecules, which stimulates inflammageing [37]. 
Senescent T-cell presenting with the above mentio-
ned SASP (senescence-associated secretory phe-
notype) [38] could also be detrimental due to their 
decreased ability to proliferate as well as impaired 
response to antigen stimulation [39]. TCD8+ 
CMV-specific memory cells, which were previously 
considered to be inactive, have the SASP and con-
tribute to the development of inflammageing [40] 
which emphasizes the aforementioned relationship 
between immunosenescence and inflammageing.

Hematopoietic stem-cell transplantation 
as a model for studying senescence  

of the immune system 

Chronic stress (eg. serial bone marrow trans-
plantations (BMT’s)) may lead to the decline of 
function of hematopoietic stem cells (HSC’s) and 
exhaustion [41]. In the murine model, the use of 
chemotherapy like 5-fluorouracil (5-FU) promotes 
quiescent HSC’s proliferation resembling that fou-
nd in the ageing process [42]. Proliferative stress 
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may also be triggered by infections (bacterial, viral 
or fungal) through stimulation of Toll-like receptors 
(TLR) on HSC’s or respective receptors for certain 
proinflammatory cytokines [43]. This however, is 
acute stress usually promptly resolved and does 
not lead to HSC exhaustion [44]. One of the likely  
reasons of resolving acute stress   at only slight 
loss of HSC, may be the innate immune system’s 
dominant role in response to acute stimuli [45]. 

Therefore, HSCT, which induces prolonged 
proliferative stress, might be a good model for stu-
dying hematopoietic cell senescence. Transplanted 
HSC’ undergo extensive proliferative stress for 
a span of a few months after transplantation (Tx) 
[46]. In addition, transplant recipients may suffer 
from chronic GvHD and increased incidence of 
infections, due to immune suppression after trans-
plantation. It is a well-established fact that allo-HCT  
leads to telomeric shortening in recipients as com-
pared to their donors and that this phenomenon 
persists decades after transplantation, as proven 
in humans by Mathioudakis et al., de Pauw et al. 
and Wynn et al. [47–49] and in canines by Zaucha 
et al. [50]. In turn, telomeric attrition results in 
a similar phenotype to that occuring in the cellular 
senescence [51]. We recently enquired whether 
the senescence of the immune system in allo-HCT 
recipients is higher compared to the senescence of 
their respective family donors. We have compared 
the immune parameters such as telomeric length 
in main lymphocyte subsets, immunophenotype, 
and proinflammatory cytokines concentrations be-
tween recipients and donors of allo-HCT after more 
than a decade following transplantation. Our results 
were not clearly conclusive to support the hypothe-
sis of faster senescence of the immune system in 
transplant recipients. We found shorter telomeres 
in recipients but only in TCD8+ subpopulation and 
subtle changes in the numbers of certain immune 
cells — TCD8+, B-cells, and TCD4+/TCD8+ ratio 
[52]. All those changes resembled an ageing immu-
ne phenotype but do not clearly indicate that the 
immune system of allo-HCT recipients ages faster 
compared to their respective donors [52].

Summary

Successful ageing is complex and still not 
a well-understood phenomenon. Ageing of the 
immune system includes two mutually intercon-
nected phenomena: inflammageing and immunose-
nescence. The common denominator of the ageing 
of the immune system is chronic proliferative 
stress which results in the shortening of telomeres, 

qualitative and quantitative changes in the immune 
cells, and shift to the proinflammatory phenotype 
of the immune cells. The allo-HCT was thought to 
be an excellent platform for studying the ageing of 
the immune system. However, our recently pub-
lished findings indicate the presence of only few 
quantitative changes in lymphocyte subpopulations 
in long-term allo-HCT survivors when compared 
to their donors, which resemble those found in 
aged individuals. This indirectly indicates that 
the elasticity of the immune system exposed to 
the immense proliferative stress at the time of 
allo-HCT is big enough to prevent the significant 
and clinically relevant acceleration of the immune 
system’s ageing.
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