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ABSTRACT
 Most hyperbaric medicine reports concentrate on the patient and his morbidities. In addition to 
the well-known indications for hyperbaric oxygen therapy (HBOT), we cannot discount possible side effects. 
Among medical staff regularly exposed to hyperbaric conditions the best described so far is decompression 
sickness. A non-invasive and easily available way to assess cognitive functioning involves the use of the crit-
ical flicker fusion frequency (CFFF) test. In the current study, the flicker test was performed several times 
on 21 subjects, both under normobaric and hyperbaric conditions. The test was conducted using the de-
vice that flickering was programmed according to the method of limits. While in the hyperbaric chamber, 
15 of the participants breathed oxygen to reduce the risk of decompression sickness. Flicker and fusion 
frequencies differed from each other in both normo- and hyperbaric conditions (p < 0.01). CFFF results 
were dependent on oxygen breathing during decompression.
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INTRODUCTION
Critical flicker fusion frequency (CFFF) is the frequency at 

which flickering light appears continuous (fusion) or begins 
to be perceived as flashing (flicker). It reflects the upper 
limit of visual processing abilities, known as the critical 
flicker fusion threshold. CFFF is used as an index of cerebral 
nervous system function, indicating alertness and cortical 
arousal. Numerous factors influencing CFFF have been de-
scribed in previous articles, including characteristics of both 
the individual and the light. One of its biggest advantages 
is that CFFF is not affected by the learning effect, so it can 
be repeatedly assessed even within short intervals [1, 2].

The critical flicker fusion frequency (CFFF) test (or flick-
er test) involves focusing on a light source and pressing 

a button when the flickering stops or starts to become 
visible. The most common method of performing the flicker 
test is the method of limits, which is based on presenting 
flickering light with ascending and descending frequency, 
resulting in fusion and flicker frequencies, accordingly [3]. 
Following this, the CFFF threshold is calculated as the av-
erage of the results of fusion and flicker. There are reports 
of differences between CFFF test results under conditions 
of increasing (fusion) and decreasing (flicker) frequency. 
However, these differences can vary over time and may 
depend on the subject’s health status [4]. Due to its charac-
teristics, the flicker test can be successfully used in unusual, 
extreme conditions, i.e., diving and hyperbaric chambers. Ox-
ygen (or other breathable gases) levels, pressure, and depth 
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impact CFFF test performance [5]. The National Centre for 
Hyperbaric Medicine in Gdynia (Poland) practices hyperbaric 
oxygen therapy (HBOT) in defined indications [6]. This study 
was based on attendant’s exposure during each, standard 
hyperbaric oxygen therapy in our centre.

Standard hyperbaric oxygen therapy for conscious pa-
tients consists of three 20-minute sessions with 5-minute 
air intervals, performed a few times a day. During each 
session a patient with a particular indication breathes 
100% oxygen at 2.5 ATA (15 meters’ water equivalent). At 
the same time, the medical attendants who must obligato-
rily assist patient(s) in the chamber are at risk of decom-
pression disease (DCS) [7–9]. This risk can be mitigated 
by pre-breathing 100% oxygen several minutes before 
starting decompression and during the whole process 
of decompression. Most staff follow this safety precaution, 
but it is only a recommendation rather than an obligation. 
Therefore, the decision whether to breathe oxygen or not 
during decompression is on attendant’s site. In our centre, 
the same as during our observational study the decision 
making about breathing mixture during decompression 
remains on the attendant. There are described situations 
in which staff choose to breathe compressed air during 
the entire session [9–11].

The role of oxygen in human body is far from being 
obvious. Apart from its role in respiratory chain, molecular 
reactions and organs functioning, the oxygen can be toxic as 
well [10]. Effects of oxygenation are well-known in relation 
to respiratory and circulatory system. Neurotoxicity and pul-
monary toxicity are well-described [12, 13]. 

The effects of oxygen on the brain are not yet well un-
derstood, and exploring this topic is important for specific 
occupational groups such as hyperbaric workers, divers 
and astronauts who are at risk for DCS [14]. The possible 
mechanism has been described by Bliznyuk et al. [15] 
basing on N-methyl-D-aspartate receptor (NMDAR) and its 
role in cognitive deficits especially under the pressure over 
2 ATA (10 meters’ water equivalent). 

Also, changes in neurological functioning due to gas 
bubbles can significantly affect neurological functions. As 
HBOT may impact cognitive functioning [16], therefore we 
compared CFFF test results among medical staff who are 
regularly exposed to hyperbaric conditions during working 
hours, dividing them into oxygen and air groups, as de-
pending on which breathing gas (oxygen or air) they used 
during decompression.

RESEARCH ASSUMPTIONS
Breathing ambient air (1 ATA, 760 mmHg) consist-

ing of 20.9% oxygen delivers a pO2 (oxygen partial pres-
sure) of approx. 158 mmHg. Therefore, while breathing 
100% oxygen at 2.5 ATA, the human body is exposed to 

pO2 1900 mmHg. Hyperoxia leads to the production of re-
active oxygen species, which increase neuronal electrical 
activity because of membrane lipid peroxidation and chang-
es in enzymatic functioning [10]. Any neurologically tox-
ic effects that are dependent on oxygen partial pressure 
and exposure time are reversible as soon as the oxygen 
supply is interrupted. 

The central nervous system is primarily affected by 
hyperoxic conditions, and the most frequently observed 
symptoms of oxygen neurotoxicity are changes in alertness 
and consciousness, visual disturbances, perception abnor-
malities, and clonic seizures in some cases [13].

The main aim of this study was to compare CFFF test 
results during oxygen and air decompression. We also 
planned to compare flicker and fusion conditions, as they 
can generate differences in flicker test results. As hyper-
baric oxygen impacts cognitive functioning [16], our aim 
was to compare CFFF results among medical staff who are 
regularly exposed to hyperbaric conditions during working 
hours, marking them as oxygen and air groups. The division 
into oxygen and air group is quasi-random as the decision 
whether to breathe air or oxygen during decompression 
remains on the attendants. 

We hypothesized that: 
 — There are differences in flicker test results between 

oxygen and air groups during decompression. 
 — There are differences between the frequencies obtained 

in flicker and fusion conditions.

MATERIALS AND METHODS
The study was conducted at the Department of Hyper-

baric Medicine and Maritime Rescue — National Center for 
Hyperbaric Medicine of the Medical University of Gdansk 
and involved 21 healthy individuals working there (16 wom-
en and 5 men), aged 28–62 (mean age = 48.14; standard 
deviation = 9.97), who had no contraindications to being in 
a hyperbaric chamber (neurological and respiratory diseas-
es, previous laryngological and thoracic surgeries, cancer-
ous diseases in advanced stages, pregnancy). The oxygen 
group consisted of 15 subjects (5 men, 10 women, aged 
28–62, mean age = 48.27, median age = 52, standard 
deviation = 11.34), while the air group — 6 women (aged 
42–53, mean age = 47.83, median age = 48, standard 
deviation = 3.39). All subjected agreed freely and signed 
informed consent. The study obtained a consent of Bioethics 
Committee for Scientific Research at Medical University 
of Gdansk, Poland.

Subjects performed a trial of 6 measurements in 
the flicker test, standardized according to the criteria de-
scribed in Table 1. The diode of the flicker test device (shown 
in Fig. 1) was 4 mm in diameter and was flickering with 
a light blue color presented from about 30 cm. 
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Each series included performance of the flicker test: 
 — under normobaric conditions before the start of the ses-

sion (1 ATA, air),
 — after compression to hyperbaric conditions (2.5 ATA) 

using air, 
 — during the hyperbaric session (2.5 ATA/air 60 min),
 — before decompression (2.5 ATA, 100% oxygen or air), 
 — after decompression (1 ATA, 100% oxygen) before exit-

ing the hyperbaric chamber, 
 — 5 minutes after the end of the hyperbaric session (1 ATA, 

air).
Since subjects participated in each condition a few 

times, the flicker test provided total 92 measurements. Mea-
surements were taken 2 to 6 times for each person, de-
pending on the availability of participants during standard 
hyperbaric oxygen therapy sessions. 

We used the Wilcoxon signed-rank test to compare 
the CFFF results between flicker and fusion paradigms. We 
analyzed the results without grouping, as well as for groups 
of oxygen and air breathers. Each pair (flicker-fusion) was 
considered a separate observation, as they were performed 
as part of a single flicker test, and the Wilcoxon signed-rank 
test does not assume the need to collect measurements from 

different individuals. The Mann-Whitney U test was used to 
compare air and oxygen groups across 3 parameters (flicker, 
fusion, average) at all 6 stages of the study, was used, as 
the results of the two groups are independent of each other 
— each participant consistently, every time, breathed either 
oxygen or air. These statistical tests were chosen due to 
their robustness in analyzing non-normally distributed data 
and their ability to handle small sample sizes effectively.

RESULTS
Given the observed deviations from normality in the dis-

tribution of our data, as assessed by the Shapiro-Wilk test, 
we employed nonparametric tests for all analyses. Con-
sequently, median values were utilized as central mea-
sures, providing a more representative characterization 
of the dataset. Missing observations were excluded from 
the analysis. The results were considered statistically signif-
icant at a p-value < 0.05. The statistical software packages 
Statistica Version 13.3 and IBM SPSS Statistics 29.0 was 
used for calculations.

We found differences between flicker and fusion at each 
time point (1–6) for both the oxygen and air breathing groups 
and among all measurements using Wilcoxon signed-rank 
test. In each case, the frequencies obtained in the fusion 
subtest with increasing frequency were significantly low-
er than in the flicker subtest with decreasing frequency 
(1:  p  =  0.006; 2, 3, 5 and 6: p < 0.001; 4: p =  0.002). 
The differences in the absolute values of the medians 
of these results were respectively: 2.87, 2.07, 3.91, 2.75, 
4.51 and 4.32 Hz. A summary of the results is presented 
in Table 2. For easier readout, they are also presented on 
Figure 2 in changes of percentage values, where 100% is 
taken as baseline (test at 1 ATA air).

Given the non-parametric nature of our data, Spearman 
rank correlation tests were employed to assess relationships 
between flicker, fusion and average frequencies of the CFFF 
test (Tab. 3). The test stages, numbered from 1 to 6, follows 
the stages shown above in Table 2. The values given therein 
represent Spearman’s rho correlation coefficient. The sta-
tistically significant correlation values at the p < 0.001 level 
are marked in orange, while those at the p < 0.05 level are 
marked in green. At the different stages of the test under 
normo- and hyperbaric conditions, the flicker subtest scores 
were strongly correlated both with each other and with 
the averaged CFFF test scores (p < 0.001). This correlation 
was not observed for fusion and flicker results, except 
during the test under 2.5 ATA and 100% oxygen conditions 
(r = 0.24; p < 0.05). However, the fusion results were par-
tially correlated with the averaged results of the CFFF test.

Comparison of oxygen-breathers with air-breathers 
during decompression showed significant differences in 
all results in the flicker test for the decreasing frequency 

Table 1. Parameters of flicker test devices

Parameter Value

Minimum frequency 10.0 Hz

Maximum frequency 50.0 Hz

Frequency change rate 1.0 [Hz/s]

Frequency change step 0.01 [Hz]

Figure 1. The device used in the flicker test
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Table 2. Comparison of results of flicker and fusion frequencies in the flicker test

Test stage Flicker [Hz] Fusion [Hz] N W Z p

Me min max Me min max

Without grouping

1 1 ATA air 40.37 25.44 49.80 37.50 28.40 49.25 89 1325.5 2.770 0.006*

2 2.5 ATA air 40.08 20.73 49.84 38.01 23.38 49.42 89 1149 3.492 0.000*

3 2.5 ATA air 60 min 40.90 30.64 49.83 36.99 28.94 49.27 85 1003 3.613 0.000*

4 2.5 ATA O2 39.69 28.75 49.77 36.94 30.13 49.29 72 772.5 3.039 0.002*

5 1 ATA postdeco 41.28 29.19 49.78 36.77 29.17 49.22 90 924 4.521 0.000*

6 1 ATA 5 min postdeco 41.23 26.72 49.81 36.91 27.05 49.4 89 917.5 4.439 0.000*

Air group

1 1 ATA air 46.12 28.66 49.56 37.53 28.40 45.29 24 2 –3.346 <0.001*

2 2.5 ATA air 45.90 34.75 49.34 38.15 23.38 47.14 24 9 –3.555 <0.001*

3 2.5 ATA air 60 min 44.65 36.65 49.48 36.71 29.12 45.26 18 10 –2.911 0.004*

4 2.5 ATA O2 47.43 35.88 49.34 38.95 35.12 44.55 13 2 –2.903 0.004*

5 1 ATA postdeco 46.42 30.23 49.23 37.32 29.17 43.75 24 5 –3.772 <0.001*

6 1 ATA 5 min postdeco 45.32 36.03 49.45 37.65 29.05 45.48 23 7 –3.88 <0.001*

Oxygen group

1 1 ATA air 37.57 25.44 49.80 37.42 31.07 49.25 66 780 –0.834 0.404

2 2.5 ATA air 39.18 20.73 49.84 37.98 31.38 49.42 68 679 –1.780 0.075

3 2.5 ATA air 60 min 38.22 30.64 49.83 37.05 28.94 49.27 68 601 –2.365 0.018*

4 2.5 ATA O2 37.53 28.75 49.77 36.81 30.13 49.29 60 645 –1.958 0.050*

5 1 ATA postdeco 39.68 29.19 49.78 36.74 29.98 49.22 67 575 –2.605 0.009*

6 1 ATA 5 min postdeco 38.10 26.72 49.81 36.84 27.05 49.4 67 559 –2.467 0.014*

Me — median; min — minimum value; max — maximum value; N — sample size; W — Wilcoxon signed-rank test; Z — Z-score; p — p-value (significant values at the < 0.05 
level was marked with *)
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task (flicker, p < 0.05) and in the averaged flicker and fusion 
scores (p < 0.05), but not in the fusion subtask. The excep-
tion was the fusion subtask performed under oxygen ther-
apy conditions (2.5 ATA, 100% O2), where the results were 
statistically significant at p = 0.01. Detailed information is 
presented in Table 4. Figure 3 presents results for flicker, 
fusion and average frequencies separately at each test 
stage. The lines in the box-plots indicate median values.

DISCUSSION
The main finding of this study is that the CFFF test results 

were affected in the oxygen group. In particular, we observed 
that hyperbaric oxygen might exert either slowing down or 
stimulating effect, depending on the pressure. As shown 
in Table 4, flicker results were of higher frequency in the 
air-group, while in the oxygen group a slight slowing down 
was observed. Comparing the results of flicker and fusion 
frequencies there was a noticeable difference in medi-
ans. Median flicker results were the lowest at the pressure 
2.5 ATA while breathing 100% oxygen. However flicker 
median while breathing air was still higher after the expo-
sure at 1 ATA in relation to flicker median at 1 ATA before 
the hyperbaric exposure. Basing on median fusion results 
they were comparable under the pressure of 2.5 ATA. Whilst 
median fusion results were lower at the pressure 2.5 ATA, 
particularly while breathing 100% oxygen in comparison to 
air-breathing group. However, as a result the average shows 
statistically significant differences in the oxygen group over-
all, which may suggest that the averaged result of CFFF test 
may not be sensitive enough to changes occurring in flicker 
and fusion recognition. 

The study has some limitations. Our sample size 
of the participants was relatively small, limiting the statis-
tical power and potentially affecting the ability to detect 
subtle effects. In hyperbaric medicine field of research, 
obtaining a more representative group and repeating CFFF 
tests are difficult due to the limitations of access to medical 
workers, who are often exposed to oxygen. Notwithstanding, 
our observations of the effects of oxygen decompression 
CFFF results in medical attendants suggest that decom-
pression on oxygen can induce a feeling of slowing down; 
at the same time, breathing oxygen at 2.5 ATA appears to 
have a stimulating effect. These results confirm that the ef-
fects of oxygen described by Kot et al. [17] are not specific 
only to representatives of special forces units, but also to 
hyperbaric unit personnel, who have about 1 exposure 
to oxygen per day. However, the procedure of that study 
differed from the current one — while that one considered 
exposure to 0.7, 1.4 and 2.8 ATA of oxygen, our study 
focuses on differentiating decompression on and without 
oxygen. Thus, this effect could be related to the frequent use 
of high partial pressures of oxygen, which is typical both for 

special forces divers and medical attendants. According to 
Kot and colleagues’ results, in the range of about 1–2 ATA, 
oxygen slows down the specialized individual’s functioning 
due to its narcotic effect, and above 2.5 ATA, the excitabil-
ity of nerve cells increases [17]. However, that study was 
conducted on a different group of subjects (81 subjects, 
young males only) and main aim of that study was to inves-
tigate if neuronal excitability is dose dependent. The CFFF 
results were compared at the pressure of 0.7 ATA, 1.4 ATA 
and 2.8 ATA. In our study we differentiated flicker and fu-
sion results depending on air or 100% oxygen as breathing 
mixtures at 1 ATA and 2.5 ATA, there was not a comparison 
in CFFF results depending on the oxygen dose.

The effects of hyperbaric oxygen on the organism are 
therefore complex, and it is difficult to determine where 
the line between a positive cognitive effect and a toxic effect 
lies as this effect seems to be dose dependent [18, 19]. 
However, it is possible that oxygen has a narcotic effect at 
doses between 1–2 ATA and decompression from 2.5 ATA 
on oxygen may be safer by avoiding excessive excitation 
of the central nervous system. Basing on our results show-
ing a slightly slowing down in oxygen group, perhaps dose 
dependent effect induces excitation or inhibition of central 
nervous system.

We also found the differences between flicker and fu-
sion thresholds, that may result from individual factors or 
different neurophysiological and neuropsychological pro-
cesses. As recently Haarlem et al. [20] indicated, the CFFF 
test results are relatively unchanged over time, but can 
depend on individual factors. Although they found no gender 
differences in CFFF results, it is possible that CFFF results 
are less stable among women, suggesting the existence 
of further variables that should be investigated. It is not ruled 
out that this can also explain outliers in the case of the data 
we obtained. According to Carmel et al. [21], the perception 
of flicker may be associated with higher activity in bilateral 
frontal and left parietal cortex, while perceiving of fusion is 
mainly related to functioning of occipital cortex. Following 
that, the processing of flickering may also be influenced by 
retinal properties [22–24]. Our finding is consistent with oth-
er studies addressing this issue [25, 26], but to date a more 
precise explanation for these differences is unknown. As 
our data show, the differences in flicker and fusion results 
occur regardless of the breathing mixture used by the par-
ticipants. This may be related to the limitations of the limit 
method of testing, which, while quite popular, may not be 
very robust to extreme responses, as Haarlem et al. (2024) 
also found. Thus, this indicates a lack of validity for using 
averaged CFFF threshold values.

Inert gas narcosis cannot be dismissed in hyperbaric 
conditions. Under the pressure of 2.5 ATA (15 meters’ wa-
ter equivalent), not only oxygen partial pressure increases, 
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Figure 3. Comparison of the CFFF test results (flicker, fusion and average frequencies) between oxygen and air groups at each of the 6 
stages of the study
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but also partial pressure of each component in the breath-
ing mixture. Undoubtedly, most publications concentrate 
on nitrogen narcosis [27, 28]. Its symptoms may include 
mood changes and cognitive functioning impairment. 
Therefore, there still remains a question, what is the ex-
act impact of so-called Martini’s effect on CFFF results 
despite our results concerning on oxygen and air groups 
[29]. Highlighting that hyperbaric medical staff regularly 
exposed to hyperbaric conditions during working time 
may not demonstrate mentioned symptoms due to habit, 
adaptation or lower sensitivity [30].

The precise oxygen exposure among medical personnel 
may be difficult to estimate. Depending on the mileage 
of HBOT session, oxygen decompression may be interrupted 
by patient emergency. Therefore, from medical attendant’s 
point of view there may be a hesitancy in oxygen or air 
decompression in relation to decompression disease or 
theoretical oxygen toxicity during such a short period of time. 
Time of exposure and oxygen percentage plays the role. As 
for today, breathing 100% oxygen during decompression 
is a recommendation. In case of decompression sickness 
among medical staff, the question of not breathing 100% 
oxygen during decompression remains unanswered.

CONCLUSIONS
We found that breathing oxygen had a slowing down 

or stimulating effect, depending on the pressure (flicker vs 
fusion frequency). Decompression from 2.5 ATA on oxygen 
may be safer, not only due to decreasing the risk of decom-
pression sickness, but also due to diminished excitation 
of the central nervous system. Inferring from above results, 
more research should be performed to define oxygen dose 
dependent effect on central nervous system.
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