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ABSTRACT
  There are many species of animals in the marine environment which are potentially dangerous to humans. 
Cnidarians that are responsible for burns are mainly found in tropical waters, but there are several species 
with cosmopolitan distribution. In some cases, contact with toxins from Cnidarians can cause symptoms 
of acute kidney damage. Because of an enormous diversity of the toxins produced by individual species 
of cnidaria, the mechanisms of renal damage are different in different cases. Currently, there is only one 
antitoxin available to treat burns by Cnidarians, this antitoxin can neutralize the toxin produced by Chironex 
fleckeri. However, recent studies on animal models give hope for the introduction of a universal biological 
agent that would be capable of inhibiting the activity of toxins produced by a variety of Cniadaria species.
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INTRODUCTION
A direct contact with the venom of marine animals poses 

a considerable health risk to individuals who spend time 
in marine waters (e.g. while swimming or scuba diving). 
Cnidaria represent a marine species which is particularly dan-
gerous to humans. Cnidarians are classified into five main 
groups: (1) sessile Anthozoa (e.g. sea anemones, corals, 
sea pens), (2) swimming Scyphozoa (jellyfish), (3) Cubozoa 
(box jellies, e.g. Chironex fleckeri), (4) swimming or sessile 
Hydrozoa (giant colonial Portuguese man-o’-war) and (5) 
Staurozoa (benthic, stalked jellyfishes) [1]. Cnidarians have 
two different body forms, the polyp and the medusa. Each 
year, an estimated 150 million people worldwide suffer 
burns from jellyfish alone [2]. Cnidarians have specialized 
cell structures (called cnidocytes), which are mainly found 

on the tentacles and around the mouth of both jellyfish 
and polyps. Cnidarians are classified into two groups: those 
with a cnidocyte, which is a sensory bud (called nematocyst) 
and those without a cnidocyte (called sporocyst) [3]. The ne-
matocyst consists of a capsule that contains a spirally coiled 
hollow thread. The thread is usually armed with barbs or 
hooks and filled with toxins. When activated, the thread is 
ejected from the capsule at high speed [4]. As a result of stim-
ulation of the cnidocyte, venom is released into the victim [5]. 
The composition of the venom varies depending on the spe-
cies and consists of a mixture of proteins, polypeptides, 
and other molecules, including low molecular weight biogenic 
amines (e.g. serotonin, histamine, bunodosine, caissarone), 
neurotoxins, and larger molecules such as enzymes (phos-
pholipases and metalloproteinases). Another feature which 
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is characteristic for cnidarians is their ability to produce 
pore-forming toxins (PFTs) [6]. Particular attention should be 
paid to phospholipase A2, which is often found in cnidarian 
toxins. It catalyzes the hydrolysis reaction of glycerophos-
pholipids, releasing fatty acids, among many other com-
pounds. With phospholipase A2 participation, metabolites 
of arachidonic acid are formed and then further metabolized. 
Prostaglandin biosynthesis may contribute to the increase 
in the concentration of reactive oxygen species. Its activation 
is the beginning of a chain of events leading to cell damage 
[7]. Cnidaria produce toxins to kill and then digest their 
prey, but also to deter predators, and maintain their territory 
(intra-species spatial competition) [4].

A direct contact with Cnidaria species normally mani-
fests as a localized skin lesion at the site of envenomation 
However, in some cases, contact with the most toxic rep-
resentatives of Cnidaria species may even lead to death 
[8–11]. In recent years, there have been numerous re-
ports of acute kidney injury (AKI) resulting from Cnidaria 
envenomation. The possibility of isolating individual toxins 
and conducting experimental studies on animal models has 
allowed researchers to determine the mechanism of Cnidar-
ia-related AKI. The aim of this study was to present the most 
dangerous Cnidarian species with a nephrotoxic potential, 
as well as to indicate new directions of research in the area 
of     modern treatment methods for Cnidaria envenomation.

CNIDARIANS DANGEROUS TO HUMANS
Of all the Cnidaria species, free-floating jellyfish cause 

most stings in humans. In contrast, injuries caused by anem-
ones are relatively rare, as most of them are attached to 
the seabed and usually do not move on their own [12]. There 

are three classes of Cnidarians which are particularly dan-
gerous to humans, it is therefore very important to identify 
the species responsible for the burn and envenomation [3]. 
For example, box Jellyfish (class Cubozoa), which includes 
the Australian Chironex fleckeri (Fig. 1) is considered ex-
tremely dangerous.

The Australian Chironex fleckeri inhabits the tropical 
waters of northern Australia and the Indo-Pacific region. 
The species is especially abundant in the summer [13]. Their 
tentacles contain millions of nematocysts supplied with 
a deadly venom [14]. The venom is rich in phospholipase 
A2 (PLA2), CfTx-1, CfTx-2, Cftx-A, Cftx-B. PLA2 causes cytolytic 
and hemolytic effects, while CfTx-1 and Cftx-2 have cardio-
toxic, cytotoxic, and dermonecrotic effects. Cftx-A and Cftx-B 
have hemolytic properties [15]. Studies on animal mod-
els suggest that C. fleckeri toxins have a direct negative 
effect on heart muscle cells and vascular endothelium 
[10, 11]. The burn initially causes tingling, paresthesia, 
burning, itching, and throbbing pain [16]. The skin is red-
dened, and blisters may occur at the site of the burn. Within 
1–2 weeks of exposure the initial lesions can progress into 
necrosis. The envenomation by Chironex fleckeri can also be 
associated with systemic symptoms such as fever, vomiting, 
respiratory failure, and kidney failure. Death from poison-
ing can occur within 2–10 minutes as a result of cardiac 
arrest and drowning [17]. More than 70 deaths have been 
documented from Chironex fleckeri burns; most of them 
sustained by children [18].

The Irukandji Jellyfish (Carukia barnesi) (Fig. 2) 
of the Cubozoa class, similarly to Chironex fleckeri, is sea-
sonally found in the waters north-east of Australia (from 
November to May). The venom of C. barnesi contains, among 

Figure 1. Chironex fleckeri
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others, PLA2 which has cytolytic and hemolytic properties 
and CbTX-I and CbTX-II proteins with a neurotoxic potential 
[19]. A burn can cause a ‘catecholamine storm’ known as 
the Irukandji Syndrome [20]. C. barnesi is a very small me-
dusa, which allows it to enter even those areas which are 
protected by special nets. Systemic symptoms usually occur 
with a delay of 20–40 minutes [21]. It is believed that this is 
related to the fact that because of the small size of the toxin 
particles (50–100 kDa), the toxin is distributed through 
the body via the lymphatic vessels [21]. Mild erythema may 
occur at the site of contact. Axial symptoms of the Irukandji 
Syndrome include truncal pain, particularly lower back pain, 
limb pain, severe tachycardia, and eventually cardiac failure 
[22]. Acute kidney damage occurs as a result of vasospasm, 
high blood pressure, and a decrease in blood flow.

Portuguese man-o´-war (Physalia physalis) (Fig. 3) be-
longs to the class Hydrozoa; it is in fact a colony of polyps, 
which is characterized by the presence of a floating sac 

(pneumatophore). It is present in the waters surrounding 
Australia, New Zealand, Indonesia, Florida, Chile, Brazil, 
Venezuela, and in the Atlantic [23]. P. physalis produces 
physaliatoxin, a glycoprotein with a mass of 240 kDa, which 
has a cytotoxic as well as hemolytic potential [24]. More-
over, the venom contains PLA2, a collagenase with cytotoxic 
and hemolytic properties, as well as an elastase, which is 
toxic to muscle cells and also exhibits a hemolytic potential. 
In addition, the toxin produced by Physalia physalis was 
found to contain: PpV19.3 (neurotoxic, cardiotoxic prop-
erties), PpV9.4 (hemolytic properties), P1, P3 (neurotoxic 
properties), DNase (cytolytic properties) [1, 25]. The burns 
can cause local erythema, blisters, skin necrosis, intense 
pain, and a burning sensation. In severe cases, systemic 
symptoms such as vomiting, nausea, hypotension, seizures, 
cardiac arrhythmias, respiratory failure, and sometimes 
death may occur [26]. Kidney damage occurs mainly as 
a result of hemolysis [27].

Figure 2. Carukia barnesi
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Figure 3. Physalia physalis

Figure 4. Phylodisscus semoni
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The night sea anemone (Phyllodiscus semoni) (Fig. 4), 
which belongs to the Anthozoa class, is particularly toxic 
to humans. It inhabits waters of the western Pacific, as 
well as the waters surrounding Indonesia, and southern 
Japan. The venom causes hemolysis and AKI [28]. It con-
tains the PsTX-T toxin and the PsTX-115 protein, which 
are both nephrotoxic, as shown on animal models [29]. 
In addition, proteins with hemolytic potential were isolat-
ed from the night sea anemone. They include PsTX-20A, 
PsTX-60A and PsTX-60B. The membrane-attacking complex 
and perforin activate the complement and are responsible 
for the occurrence of hemolytic-uremic syndrome (HUS) [29]. 

Table 1 lists the toxins produced by individual classes 
of cnidaria species, clinical symptoms, and initial medical 
treatments for envenomation. 

NEPHROTOXIC EFFECTS OF CNIDARIA 
TOXINS

AKI in humans is well documented in cases of con-
tact with jellyfish and sea anemones [30]. According to 
the Kidney Disease Improving Global Outcomes (KDIGO), 
AKI is defined by a serum creatinine increase ≥ 0.3 mg/dL 
(26.5 µmol/L) within 48 hours or an increase ≥ 1.5 times 
baseline or urine volume < 0.5 mL/kg/h for 6 hours [31]. 
Production of PFTs, which are responsible for damaging 
the integrity of cell membranes, is characteristic for Cnidaria 
envenomation [32]. The consequence of membrane dam-
age is an uncontrollable movement of ions: influx of Na+, 
Ca2+, and loss of K+ ions [28]. The resulting damage is 
caused by a significant loss of plethora of macromolecules, 
while the continuous increase in cytosolic Ca2+ leads to 

Table 1. Toxins, properties, and recommended medical treatments 

Cnidaria
class

Toxins Properties Clinical picture The main mechanism for 
kidney damage

Treatment

Chironex 
fleckeri
Cubozoa

Phospholipase A2 Cytolytic hemolytic Paresthesia, skin 
necrosis, itching, pain, 
fever, vomiting, symp-
toms of respiratory 
failure, AKI

Hemolysis 4–6% vinegar — 30 s, 
sea water,
bioCSL’s  
box jellyfish antivenom

CfTx-1 Cardiotoxic, cytotoxic, 
nephrotoxic

Cardiotoxic, cytotoxic, 
nephrotoxic

CfTx-2

CfTx-A Hemolytic 

Cftx-B

Carukia 
barnesi
Cubozoa

Phospholipase A2 Cytolytic hemolytic Irukandji syndrome 
delayed onset —  
20–40 min, typical 
symptoms: 
back pain, limb pain, 
severe hypertension, 
sweating, cardiac dys-
function

Prerenal kidney failure due 
to vasoconstriction, reduced 
perfusion, cardiac dysfunc-
tion

4–6% vinegar — 30 s,  
analgesics: opioids*, 
clonidine,
magnesium sulphate — 
to relief pain,
RR measurements 
nitrates**

CbTx-I Neurotoxic  
Neurotoxic

CbTx-II

Physalia 
physalis 
Hydrozoa

Physaliatoxin Cytotoxic 
hemolytic

Rhabdomyolysis Sea water to rinse re-
maining tentacles,
hot water 

Phospholipase A2

Elastase Myotoxic 
Cytolytic hemolytic

PpV19.3 Neurotoxic 
Cardiotoxic

PpV9.4 Hemolytic

P1 Neurotoxic

P3 Neurotoxic 

DNase Cytolytic

Phyllo-
discus 
semoni 
Anthozoa

PsTX-T Nephrotoxic Jaundice, petechiae 
or mucosal bleeding, 
kidney damage

TTP (Thrombotic Thrombo-
cytopenic Purpura)/atypical 
HUS

*with the exception of pethidine
**contraindicated with concurrent use of phosphodiesterase inhibitors
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cell damage. The influx of Ca2+ into cells is responsible 
for several clinical symptoms observed following a contact 
with the toxin [29]. In turn, PLA2 can cause acute damage 
to the renal tubules [33].   

HEMOGLOBINURIA
Intravascular hemolysis results from the breakdown 

of erythrocytes under the influence of toxins released by 
Cnidaria with a hemolytic potential. The hemolytic prop-
erties of the Cnidaria toxins have been well described for 
the Physalia physalis and box jellyfish species [34]. Clinical 
symptoms characteristic of hemolysis include sudden yel-
lowing and abnormal paleness of the skin, in addition to 
general symptoms resulting from anemia such as decreased 
exercise tolerance, tachycardia, or dyspnea. Laboratory 
signs of hemolysis are listed in Table 2. Free hemoglobin 
(Hb) binds with haptoglobin (Hp), and the complex is me-
tabolized in the liver. In the case of Hp saturation, the only 
way to remove free Hb is filtration in the renal glomeruli. 
Free Hb has a direct toxic effect on renal tubules as it 
induces enzymes responsible for oxidative stress [35]. In 
addition, the forming casts mechanically disrupt the urine 
flow in renal tubules [36, 37]. The pathophysiology of renal 
damage in hemoglobinuria is based on three mechanisms: 
direct damage to tubular epithelial cells, vasoconstriction 
leading to reduced kidney perfusion, and tubular obstruction 
by casts. Treatment may be difficult because in the case 
of cnidarian toxins there is no possibility of causal treatment. 
Maintaining proper hydration and forcing diuresis is crucial. 
Isotonic salt is recommended. In some cases, it is necessary 
to start renal replacement therapy [38].

RHABDOMYOLYSIS
Rhabdomyolysis (RML) is caused by damage to striated 

muscle cells, which results in a release of large amounts 
of myoglobin into the peripheral circulation [39]. Cases 
of RML have been reported following contact with Physalia 
physalis [40]. The classic presentation of this condition 
includes muscle pain, weakness, dark urine (due to the pres-
ence of myoglobin), and markedly elevated serum creatine 

kinase (CK) levels, exceeding the upper limit five to ten 
times. Measurement of CK activity is helpful in estimating 
the risk of kidney damage. Low risk of kidney damage cor-
responds to a CK value of less than 5,000 U/L. Individuals 
with CK level between 5,000 and 15,000 U/L are at a high 
risk of kidney damage. At CK values   > 15,000 U/L, there 
is a high risk of requiring renal replacement therapy [41]. 
Other laboratory parameters and tests characteristic of RML 
are listed in Table 2. Similar to hemolysis, the mechanisms 
leading to AKI include direct damage to tubular epithelial 
cells, vasoconstriction leading to reduced kidney perfusion, 
and tubular obstruction by casts. Myoglobin can bind nitric 
oxide (NO), which leads to its neutralization and eliminates 
its vasodilatory effect. In turn, vasoconstriction leads to re-
nal hypoperfusion and ischemia [42]. Regardless of the eti-
ology, treatment should be aggressive. Prevention of renal 
damage in the form of intravenous fluid therapy should be 
implemented as soon as possible to maintain renal perfu-
sion, minimize ischemic damage, and increase urine pro-
duction. Dissolution of the heme dye partially removes ob-
structing intratubular casts and increases urinary excretion 
of potassium [43]. In addition to an isotonic salt infusion, 
sodium bicarbonate is used in selected cases in the treat-
ment of rhabdomyolysis when the CK concentration exceeds 
5,000 U/l and the blood pH is lower than 7.5 [44].

HEMOLYTIC-UREMIC SYNDROME
Phyllodiscus semoni is a highly toxic sea anemone. Its 

venom has multiple unfavorable effects, including, hemoly-
sis, renal injuries, or even death. Characteristic symptoms 
of HUS (hemolytic-uremic syndrome) include jaundice, skin 
petechiae or bleeding from mucous membranes, and kid-
ney damage. The mechanism of nephrotoxicity has been 
well documented in studies conducted on animal mod-
els. The toxin PsTX-T obtained from P. semoni nematocysts 
has shown nephrotoxic properties in the form of damage to 
the glomerular endothelium in a similar way to an atypical 
HUS (aHUS) [45]. The underlying mechanisms of renal inju-
ries in humans are not clearly understood. Data available 
in the literature regarding treatment is based only on case 

Table 2. Laboratory tests essential in AKI diagnosis

Laboratory tests Interpretation

Low hemoglobin concentration with accompanying thrombocytopenia and schistocytes 
present in the blood film, high LDH, high potassium concentration

Microangiopathic hemolytic anemia

High creatinine and urea concentration Acute kidney injury

High CK and myoglobin concentration, high potassium, phosphorus and uric acid concen-
tration, dark urine

Rhabdomyolysis

Low hemoglobin concentration, elevated reticulocyte count, increased total and free biliru-
bin, increased LDH concentration, decreased haptoglobin concentration

Hemolysis
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reports. Making the correct diagnosis involves performing 
a detailed differential diagnosis including TTP (thrombocy-
topenic purpura), typical HUS, and the genetic background 
responsible for aHUS. Currently, complement inhibitors 
(anti-C5 antibody, Eculizumab) are used for the treatment 
of atypical HUS in humans. Based on the results of studies 
on animal models, anti-complement therapy might be an 
option to treat HUS caused by sea anemone toxin [29]. 

TREATMENT
Therapeutic problems we are dealing with are primar-

ily related to the lack of guidelines based on EBM (Evi-
dence-Based Medicine). The meta-analysis conducted by 
McGee on the recent treatments of jellyfish burns, revealed 
no study that would bring breakthrough results [46]. There 
are many reasons behind the difficulties in providing appro-
priate treatment. In some cases, it is difficult to determine 
the species of the animal and thus the type of toxin that 
had caused the envenomation. One solution that allows an 
experienced diagnostician to recognize a jellyfish species 
involves applying an adhesive tape to the area of     the skin 
where fragments of previously neutralized jellyfish frag-
ments remain [47]. The second problem is the lack of possi-
bility of using specific antitoxin in first aid conditions. The ef-
fectiveness of the currently available antitoxin for C. fleckeri 
is still a subject of debate. A rapid penetration of toxins into 
the capillaries immediately triggers a quick onset of symp-
toms of severe poisoning and delayed administration of an-
titoxin means that it may be ineffective [48, 49]. Indications 
for administration of the antitoxin include cardiac arrest, 
heart failure, acute respiratory failure, and pain that does 
not subside after analgesics [50]. For travelers arriving at 
places where burns are common, the choice of external 
agents may be problematic. Vinegar applied to the burn site 
does not neutralize the toxin that has already been released, 
it only leads to limiting a further release of toxin, and it also 
has no analgesic properties. It should be remembered that 
in some cases, the use of vinegar may promote further 
release of the toxin, as in the case of Physalia physalis 
and other jellyfish occurring outside of the tropical waters 
[51]. Ice packs, warm water, and topical anesthesia can be 
used in pain relief only after the procedure of neutralizing 
nematocysts is completed [52]. The diagnosis of a general-
ized reaction to the toxin is tantamount to an urgent need 
to transport such a person to the hospital. The possibility 
of AKI should be considered already at this stage of the pro-
cedure. Monitoring vital parameters such as heart rate 
and blood pressure is essential. The purpose of perform-
ing an ECG is to detect rhythm and conduction disorders 
early. Laboratory tests should include not only creatinine 
concentration measurement, but also parameters such 
as: CK, LDH, ALT activity measurement, general urinalysis, 

haptoglobin concentration, which may be helpful in early 
differentiation of the mechanism of kidney damage. To sum 
up, first aid after a contact with cnidarian toxins will depend 
on the geographical region where the event occurred. If 
these were tropical waters of Australia or the Indo-Pacific, 
the first choice would be vinegar at a concentration of 3–6% 
[53]. In the case of other waters, it is recommended to use 
hot water. Alcohol, fresh water, or any other substances 
should not be directly applied to damaged skin at any in-
stance, as this may cause a release of toxins from the intact 
nematocysts [51]. 

The venom of cnidarians is a mixture of active sub-
stances, the effects of which cannot always be predicted. 
Therefore, the knowledge of pathological mechanisms de-
veloping in humans as a result of burns is still insufficient. 
The toxin can directly damage cells, but also generate in-
flammation and form complexes with other proteins. New 
directions of research include the development of specific 
inhibitors of toxic venom components. One of the most 
common proteins among animal toxins is PLA2. PLA2 is 
present in the composition of toxins not only of cnidarians, 
but also of other animals, such as snakes. It catalyzes 
the hydrolysis reaction of glycerophospholipids, releasing 
fatty acids. With PLA2’s participation, metabolites of ara-
chidonic acid are formed and then further metabolized. 
The biosynthesis of prostaglandins can contribute to an 
increase in the concentration of reactive oxygen species. Its 
activation is the beginning of a chain of events leading to 
cell damage [7]. PLA2 inhibition may be a fundamental ac-
tion preventing the escalation of damage caused directly 
and through interactions with other proteins, which lead 
to coagulopathy. Currently, a PLA2 inhibitor, varespladib 
(LY315920), is in the research phase [7]. Studies on animal 
models have shown the inhibitor’s effectiveness in blocking 
PLA2, as well as its nephroprotective effect (in ameliorating 
hemolysis, rhabdomyolysis and renal function) [54].

CONCLUSIONS
Prevention is the best method of action in the event 

of contact with Cnidaria. Providing appropriate care to an 
injured person can be complicated, especially if a burn takes 
place away from the shore. People who are planning to go 
diving or surfing in waters inhabited by Cnidaria species, 
should familiarize themselves with local announcements 
and recommendations concerning the prevention and treat-
ment of burns by cnidarian species. The best preventive 
methods include keeping up to date with announcements 
and wearing protective clothing (a wetsuit). It is possible 
to apply external preparations and solutions to the injured 
skin, although the effectiveness of such treatment has not 
been established in studies. Also, it needs to be kept in mind 
that even dead marine fauna is potentially dangerous to 
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humans, because it still contains toxic substances which 
can cause envenomation.
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