Vol 13, No 3-4 (2022)
Review paper
Published online: 2023-02-12

open access

Page views 2556
Article views/downloads 334
Get Citation

Connect on Social Media

Connect on Social Media

Waldenström macroglobulinemia: diagnosis and treatment

Krzysztof Giannopoulos12
Hematology in Clinical Practice 2022;13(3-4):89-96.


Waldenström macroglobulinemia (WM), according to the 2017 World Health Organization classification, is defined as the co-occurrence of lymphoplasmacytic lymphoma involving the bone marrow with monoclonal gammopathy of the IgM class regardless of the concentration of monoclonal protein. It is a rare lymphoproliferative disease with distinctive clinical features. Diagnostic characteristics in WM have changed significantly with the discovery of two molecular markers: MYD88 and CXCR4. The mutational status of these markers both affects clinical presentation and has shown therapeutic implications. The choice of treatment in WM is closely dependent on the patient’s age, risk of treatment-related neuropathy, and risk of immunosuppression or secondary malignancies. The therapeutic landscape has broadened in recent years, and the approvals of ibrutinib and zanubrutinib represent a significant step forward toward better management of the disease.

Article available in PDF format

View PDF Download PDF file


  1. Owen RG, Treon SP, Al-Katib A, et al. Clinicopathological definition of Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia. Semin Oncol. 2003; 30(2): 110–115.
  2. Swerdlow SH, Campo E, Harris NL. Classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon 2008.
  3. Swerdlow SH, Campo E, Harris NL. World Health Organization classification of tumors. Pathology and genetics of tumours of hematopoietic and lymphoid tissues. IARC Press, Lyon 2017.
  4. Steingrímsson V, Lund SH, Turesson I, et al. Population-based study on the impact of the familial form of Waldenström macroglobulinemia on overall survival. Blood. 2015; 125(13): 2174–2175.
  5. Leleu X, Xie W, Bagshaw M, et al. The role of serum immunoglobulin free light chain in response and progression in waldenstrom macroglobulinemia. Clin Cancer Res. 2011; 17(9): 3013–3018.
  6. Ghobrial IM. Are you sure this is Waldenstrom macroglobulinemia? Hematology Am Soc Hematol Educ Program. 2012; 2012: 586–594.
  7. D'Souza A, Ansell S, Reeder C, et al. Waldenström macroglobulinaemia: the key questions. Br J Haematol. 2013; 162(3): 295–303.
  8. Morel P, Duhamel A, Gobbi P, et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood. 2009; 113(18): 4163–4170.
  9. Braggio E, Philipsborn C, Novak A, et al. Molecular pathogenesis of Waldenstrom's macroglobulinemia. Haematologica. 2012; 97(9): 1281–1290.
  10. Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010; 465(7300): 885–890.
  11. Yang G, Zhou Y, Liu X, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood. 2013; 122(7): 1222–1232.
  12. Treon SP, Xu L, Guerrera ML, et al. Genomic landscape of Waldenström macroglobulinemia and its impact on treatment strategies. J Clin Oncol. 2020; 38(11): 1198–1208.
  13. Munshi M, Liu X, Chen JG, et al. SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas. Blood Cancer J. 2020; 10(1): 12.
  14. Manček-Keber M, Lainšček D, Benčina M, et al. Extracellular vesicle-mediated transfer of constitutively active MyD88 engages MyD88 and activates signaling. Blood. 2018; 131(15): 1720–1729.
  15. Poulain S, Roumier C, Venet-Caillault A, et al. Genomic landscape of CXCR4 mutations in Waldenström macroglobulinemia. Clin Cancer Res. 2016; 22(6): 1480–1488.
  16. Nie Y, Waite J, Brewer F, et al. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J Exp Med. 2004; 200(9): 1145–1156.
  17. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014; 124: 31–82.
  18. Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014; 123(11): 1637–1646.
  19. Treon SP, Cao Y, Xu L, et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014; 123(18): 2791–2796.
  20. Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia. Leukemia. 2015; 29(1): 169–176.
  21. Roccaro AM, Sacco A, Jimenez C, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014; 123(26): 4120–4131.
  22. Xu L, Hunter ZR, Tsakmaklis N, et al. Clonal architecture of CXCR4 WHIM-like mutations in Waldenström macroglobulinaemia. Br J Haematol. 2016; 172(5): 735–744.
  23. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. N Engl J Med. 2012; 367(9): 826–833.
  24. Gertz MA. Waldenström macroglobulinemia: 2019 update on diagnosis, risk stratification, and management. Am J Hematol. 2019; 94(2): 266–276.
  25. Dimopoulos MA, Kastritis E, Owen RG, et al. Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus. Blood. 2014; 124(9): 1404–1411.
  26. Kastritis E, Leblond V, Dimopoulos MA, et al. ESMO Guidelines Committee. Waldenström's macroglobulinaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018; 29(Suppl 4): iv41–iv50.
  27. Leblond V, Kastritis E, Advani R, et al. Treatment recommendations from the Eighth International Workshop on Waldenström's Macroglobulinemia. Blood. 2016; 128(10): 1321–1328.
  28. Szczeklik A, Gajewski PV. 5.6. Chłoniak limfoplazmocytowy makroglobulinemia Waldenströma. In: Szczeklik A. ed. Interna Szczeklika. Medycyna Praktyczna, Kraków 2021.
  29. Leblond V, Johnson S, Chevret S, et al. Results of a randomized trial of chlorambucil versus fludarabine for patients with untreated Waldenström macroglobulinemia, marginal zone lymphoma, or lymphoplasmacytic lymphoma. J Clin Oncol. 2013; 31(3): 301–307.
  30. Gavriatopoulou M, Ntanasis-Stathopoulos I, Kastritis E, et al. How I treat rituximab refractory patients with WM. Oncotarget. 2018; 9(96): 36824–36825.
  31. Castillo JJ, Kanan S, Meid K, et al. Rituximab intolerance in patients with Waldenström macroglobulinaemia. Br J Haematol. 2016; 174(4): 645–648.
  32. Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström's macroglobulinemia. N Engl J Med. 2015; 372(15): 1430–1440.
  33. Treon SP, Xu L, Hunter Z. MYD88 mutations and response to ibrutinib in Waldenström's macroglobulinemia. N Engl J Med. 2015; 373(6): 584–586.
  34. Tam CS, Opat S, D'Sa S, et al. A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenström macroglobulinemia: the ASPEN study. Blood. 2020; 136(18): 2038–2050.
  35. Owen RG, McCarthy H, Rule S, et al. Acalabrutinib monotherapy in patients with Waldenström macroglobulinemia: a single-arm, multicentre, phase 2 study. Lancet Haematol. 2020; 7(2): e112–e121.
  36. Dimopoulos MA, Tedeschi A, Trotman J, et al. iNNOVATE Study Group and the European Consortium for Waldenström’s Macroglobulinemia. Phase 3 trial of ibrutinib plus rituximab in Waldenström's macroglobulinemia. N Engl J Med. 2018; 378(25): 2399–2410.
  37. Castillo JJ, Advani RH, Branagan AR, et al. Consensus treatment recommendations from the tenth International Workshop for Waldenström Macroglobulinaemia. Lancet Haematol. 2020; 7(11): e827–e837.

Hematology in Clinical Practice