Vol 11, No 3 (2020)
Review paper
Published online: 2020-09-29

open access

Page views 729
Article views/downloads 779
Get Citation

Connect on Social Media

Connect on Social Media

Endocrine and metabolic complication of treatment haematological malignancies

Michał Litwińczuk, Joanna Szydełko, Magdalena Szydełko, Monika Podhorecka, Agnieszka Szymczyk1
Hematologia 2020;11(3):113-124.

Abstract

Despite the significant progress in the treatment of haematological malignancies and the improvement of treatment efficacy, it is still associated with numerous side effects. Among them, endocrinological and diabetic complications of immunotherapy are of particular importance, and they belong to the most frequently observed, mainly due to the interference of the treatment with functioning of the immune system. As a result, it can lead to the induction of autoimmune processes in many systems, including endocrine glands. The effectiveness of some therapies may also be determined by the occurrence of side effects in the form of autoimmune diseases. Increasing use of tyrosine kinase inhibitors, immune checkpoint inhibitors, as well as glucocorticosteroids exerting immunosuppressive effect, which are applied, leads to the development of various pathologies of the endocrine system. The most common complications developing on the background of autoimmune inflammation are disturbances in the function of thyroid gland, pituitary gland in its anterior lobe, and very rarely in the posterior lobe in the form of diabetes insipidus. The above-mentioned disorders may occur in patients of all ages, regardless of gender. Some dysfunctions are subclinical and are found incidentally during routine check-up, both in the course of the treatment process or after its completion. Taking into account the possibility of serious consequences of the therapy, it is now recommended to periodically control the patients.

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Gebauer J, Higham C, Langer T, et al. Long-term endocrine and metabolic consequences of cancer treatment: a systematic review. Endocr Rev. 2019; 40(3): 711–767.
  2. Dickens E, Benjamin S, Karavitaki N, Karpe F, Grossman A. Adult haematology long term follow-up guideline — endocrine sequelae. Oxford University Hospitals NHS Foundation Trust 2016. http://nssg.oxford-haematology.org.uk/oxford/long-term-follow-up/H-99-adult-haematology-long-term-follow-up-guideline-endocrine-sequelae.pdf (September 28, 2020).
  3. Vetter ML, Kaul S, Iqbal N. Tyrosine kinase inhibitors and the thyroid as both an unintended and an intended target. Endocr Pract. 2008; 14(5): 618–624.
  4. Sobańska K, Szałek E, Kamińska A, et al. Tyrosine kinase inhibitors in anticancer therapy. Farm Współ. 2011; 4: 185–190.
  5. Król A, Gawlik T, Jarząb B. Endocrine complications of cancer immunotherapy. Endokrynol Pol. 2018; 69(6): 722–733.
  6. Bakerywala S, Schwarcz MD, Goldberg MD, et al. Nilotinib-associated destructive thyroiditis. Case Rep Endocrinol. 2015; 2015: 736092.
  7. Hamnvik OPR, Larsen PR, Marqusee E. Thyroid dysfunction from antineoplastic agents. J Natl Cancer Inst. 2011; 103(21): 1572–1587.
  8. de Groot JW, Zonnenberg BA, Plukker JTM, et al. Imatinib induces hypothyroidism in patients receiving levothyroxine. Clin Pharmacol Ther. 2005; 78(4): 433–438.
  9. Abdulrahman RM, Verloop H, Hoftijzer H, et al. Sorafenib-induced hypothyroidism is associated with increased type 3 deiodination. J Clin Endocrinol Metab. 2010; 95(8): 3758–3762.
  10. Kim TD, Schwarz M, Nogai H, et al. Thyroid dysfunction caused by second-generation tyrosine kinase inhibitors in Philadelphia chromosome-positive chronic myeloid leukemia. Thyroid. 2010; 20(11): 1209–1214.
  11. Wolter P, Stefan C, Decallonne B, et al. The clinical implications of sunitinib-induced hypothyroidism: a prospective evaluation. Br J Cancer. 2008; 99(3): 448–454.
  12. Mondello P, Mian M, Pitini V, et al. Thyroid hormone autoantibodies: are they a better marker to detect early thyroid damage in patients with hematologic cancers receiving tyrosine kinase inhibitor or immunoregulatory drug treatments? Curr Oncol. 2016; 23(3): e165–e170.
  13. Ntali G, Kassi E, Alevizaki M. Endocrine sequelae of immune checkpoint inhibitors. Hormones (Athens). 2017; 16(4): 341–350.
  14. Marciniec M, Nowak A, Filip A. Przeciwciała o działaniu immunomodulacyjnym w terapii nowotworów. Nowotwory. J Oncol. 2015; 65(1): 42–47.
  15. Sakamuri D, Glitza IC, Betancourt Cuellar SL, et al. Phase I dose-escalation study of anti-CTLA-4 antibody ipilimumab and lenalidomide in Patients with advanced cancers. Mol Cancer Ther. 2018; 17(3): 671–676.
  16. Tan MH, Iyengar R, Mizokami-Stout K, et al. Spectrum of immune checkpoint inhibitors-induced endocrinopathies in cancer patients: a scoping review of case reports. Clin Diabetes Endocrinol. 2019; 5: 1.
  17. Villarreal J, Townes D, Vrablik M, et al. A case of drug-induced severe endocrinopathies: what providers in the emergency department need to know. Adv Emerg Nurs J. 2018; 40(1): 16–20.
  18. Zhao Y, Yang W, Huang Y, et al. Evolving roles for targeting CTLA-4 in cancer immunotherapy. Cell Physiol Biochem. 2018; 47(2): 721–734.
  19. Tshuma N, Glynn N, Evanson J, et al. Hypothalamitis and severe hypothalamic dysfunction associated with anti-programmed cell death ligand 1 antibody treatment. Eur J Cancer. 2018; 104: 247–249.
  20. Muller I, Moran C, Lecumberri B, et al. 2019 European Thyroid Association Guidelines on the management of thyroid dysfunction following immune reconstitution therapy. Eur Thyroid J. 2019; 8(4): 173–185.
  21. Chang LS, Barroso-Sousa R, Tolaney SM, et al. Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. Endocr Rev. 2019; 40(1): 17–65.
  22. Guaraldi F, La Selva R, Samà MT, et al. Characterization and implications of thyroid dysfunction induced by immune checkpoint inhibitors in real-life clinical practice: a long-term prospective study from a referral institution. J Endocrinol Invest. 2018; 41(5): 549–556.
  23. Raschi E, Mazzarella A, Antonazzo IC, et al. Toxicities with immune checkpoint inhibitors: emerging priorities from disproportionality analysis of the FDA adverse event reporting system. Target Oncol. 2019; 14(2): 205–221.
  24. Peiró I, Palmero R, Iglesias P, et al. Thyroid dysfunction induced by nivolumab: searching for disease patterns and outcomes. Endocrine. 2019; 64(3): 605–613.
  25. Mondello P, Mian M, Pitini V, et al. Thyroid hormone autoantibodies: are they a better marker to detect early thyroid damage in patients with hematologic cancers receiving tyrosine kinase inhibitor or immunoregulatory drug treatments? Curr Oncol. 2016; 23(3): e165–e170.
  26. Torino F, Corsello SM, Salvatori R. Endocrinological side-effects of immune checkpoint inhibitors. Curr Opin Oncol. 2016; 28(4): 278–287.
  27. Gauci ML, Boudou P, Squara PA, et al. PATIO group. Checkpoint inhibitor treatment induces an increase in HbA1c in nondiabetic patients. Melanoma Res. 2019; 29(3): 328–332.
  28. Iglesias P. Cancer immunotherapy-induced endocrinopathies: clinical behavior and therapeutic approach. Eur J Intern Med. 2018; 47: 6–13.
  29. Agrawal L, Bacal A, Jain S, et al. Immune checkpoint inhibitors and endocrine side effects, a narrative review. Postgrad Med. 2020; 132(2): 206–214.
  30. Lomax AJ, McNeil C. Acute management of autoimmune toxicity in cancer patients on immunotherapy: Common toxicities and the approach for the emergency physician. Emerg Med Australas. 2017; 29(2): 245–251.
  31. Rensen N, Gemke RJ, van Dalen EC, et al. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia. Cochrane Database Syst Rev. 2017; 11: CD008727.
  32. Tauchmanovà L, Selleri C, Rosa GDe, et al. High prevalence of endocrine dysfunction in long-term survivors after allogeneic bone marrow transplantation for hematologic diseases. Cancer. 2002; 95(5): 1076–1084.
  33. Orio F, Muscogiuri G, Palomba S, et al. Endocrinopathies after allogeneic and autologous transplantation of hematopoietic stem cells. ScientificWorldJournal. 2014; 2014: 282147.
  34. Brennan B, Shalet SM. Endocrine late effects after bone marrow transplant. Br J Haematol. 2002; 118(1): 58–66.
  35. Wędrychowicz A, Zygmunt-Górska A, Wojtyś J, et al. Endocrine complications after allogeneic hematopoietic stem cell transplantation in childhood — case report and review of literature. Pediatr Endocrinol. 2012; 11(4): 67–79.
  36. Hilgendorf I, Greinix H, Halter JP, et al. Long-term follow-up after allogeneic stem cell transplantation. Dtsch Arztebl Int. 2015; 112(4): 51–58.
  37. Chemaitilly W, Sklar CA. Endocrine complications of hematopoietic stem cell transplantation. Endocrinol Metab Clin North Am. 2007; 36(4): 983–98; ix.
  38. Jadoul P, Donnez J. How does bone marrow transplantation affect ovarian function and fertility? Curr Opin Obstet Gynecol. 2012; 24(3): 164–171.
  39. Paviglianiti A. Endocrine and metabolic disorders after hematopoietic cell transplantation. Turk J Haematol. 2020; 37(2): 111–115.
  40. Somali M, Mpatakoias V, Avramides A, et al. Function of the hypothalamic-pituitary-gonadal axis in long-term survivors of hematopoietic stem cell transplantation for hematological diseases. Gynecol Endocrinol. 2005; 21(1): 18–26.
  41. Sanders JE, Buckner CD, Amos D, et al. Ovarian function following marrow transplantation for aplastic anemia or leukemia. J Clin Oncol. 1988; 6(5): 813–818.
  42. Wędrychowicz A, Wojtyś J, Starzyk J. Anti-Muellerian hormone (AMH) as only possible marker in the assessment of ovarian function and reserve after hematopoietic stem cell transplantation (HSCT) in prepubertal girls, young females with composed hypogonadism and females receiving hormonal replacement therapy. Bone Marrow Transplant. 2017; 52(2): 313–316.
  43. Schimmer AD, Quatermain M, Imrie K, et al. Ovarian function after autologous bone marrow transplantation. J Clin Oncol. 1998; 16(7): 2359–2363.
  44. Tauchmanovà L, Selleri C, De Rosa G, et al. Endocrine disorders during the first year after autologous stem-cell transplant. Am J Med. 2005; 118(6): 664–670.
  45. Sklar CA, Robison LL, Nesbit ME, et al. Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Children Cancer Study Group. J Clin Oncol. 1990; 8(12): 1981–1987.
  46. Shalet SM, Didi M, Ogilvy-Stuart AL, et al. Growth and endocrine function after bone marrow transplantation. Clin Endocrinol (Oxf). 1995; 42(4): 333–339.
  47. Savas-Erdeve S, Berberoglu M, Siklar Z, et al. Primary adrenal insufficiency in a child after busulfan and cyclophosphamide-based conditioning for hematopoietic stem cell transplantation. J Pediatr Endocrinol Metab. 2011; 24(9-10): 853–855.
  48. Tauchmanova L, Colao A, Selleri C, et al. Thyroid dysfunction after autologous hematopoietic stem cell transplant. Am J Med. 2006; 119(6): e5–e6.
  49. Niedzielska E, Wójcik D, Barg E, et al. [Evaluation of selected endocrine complications in patients treated with auto- and allo-haematopoietic stem cell transplantation]. Med Wieku Rozwoj. 2008; 12(3): 761–766.
  50. Farhadfar N, Stan MN, Shah P, et al. Thyroid dysfunction in adult hematopoietic cell transplant survivors: risks and outcomes. Bone Marrow Transplant. 2018; 53(8): 977–982.
  51. Kami M, Tanaka Y, Chiba S, et al. Thyroid function after bone marrow transplantation: possible association between immune-mediated thyrotoxicosis and hypothyroidism. Transplantation. 2001; 71(3): 406–411.
  52. Paydas S. Autoimmune thyroid dysfunction after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2005; 36(3): 277.
  53. Au WY, Lie AK, Kung AW, et al. Thyrotoxic periodic paralysis after allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2005; 129(1): 160–161.
  54. Feng YH, Su BA, Lin CY, et al. Hyperthyroidism as a latent complication of autologous hematopoietic stem cell transplantation. Int J Hematol. 2008; 88(2): 237–239.
  55. Rivas M, Santisteban P. TSH-activated signaling pathways in thyroid tumorigenesis. Mol Cell Endocrinol. 2003; 213(1): 31–45.
  56. Cohen A, Békássy AN, Gaiero A, et al. EBMT Paediatric and Late Effects Working Parties. Endocrinological late complications after hematopoietic SCT in children. Bone Marrow Transplant. 2008; 41 Suppl 2: S43–S48.
  57. Vivanco M, Dalle JH, Alberti C, et al. Malignant and benign thyroid nodules after total body irradiation preceding hematopoietic cell transplantation during childhood. Eur J Endocrinol. 2012; 167(2): 225–233.
  58. Fuji S, Rovó A, Ohashi K, et al. How do I manage hyperglycemia/post-transplant diabetes mellitus after allogeneic HSCT. Bone Marrow Transplant. 2016; 51(8): 1041–1049.
  59. Poonsombudlert K, Limpruttidham N. Total Body Irradiation and Risk of Diabetes Mellitus; A Meta-Analysis. Asian Pac J Cancer Prev. 2019; 20(3): 885–891.
  60. Sklar C, Boulad F, Small T, et al. Endocrine complications of pediatric stem cell transplantation. Front Biosci. 2001; 6: G17–G22.



Hematology in Clinical Practice