Tom 10, Nr 2 (2019)
PRACE POGLĄDOWE
Opublikowany online: 2019-06-17
Pobierz cytowanie

Zastosowanie sekwencjonowania następnej generacji do oceny heterogenności klonalnej oraz minimalnej choroby resztkowej u chorych na szpiczaka plazmocytowego

Iwona Solarska, Bartosz Puła, Agnieszka Krzywdzińska, Krzysztof Jamroziak
DOI: 10.5603/Hem.a2019.0019
·
Hematologia 2019;10(2):75-86.

dostęp płatny

Tom 10, Nr 2 (2019)
PRACE POGLĄDOWE
Opublikowany online: 2019-06-17

Streszczenie

Szpiczak plazmocytowy (PCM) jest chorobą nowotworową charakteryzującą się klonalną proliferacją plazmocytów w szpiku kostnym lub narządach pozaszpikowych. Rodzaj zaburzeń molekularnych, szczególnie wtórnych, kształtuje tempo progresji tego nowotworu i różnorodność obrazu klinicznego u poszczególnych chorych. Choroba stanowi idealny model do badania zjawiska heterogenności wewnątrzklonalnej ze względu na wysoki stopień zróżnicowania genetycznego klonu nowotworowego. Proces ewolucji wewnątrzklonalnej odgrywa podstawową rolę w transformacji nowotworowej i progresji gammapatii o nieokreślonym znaczeniu oraz bezobjawowego szpiczaka tlącego się do postaci objawowej. Istnienie różnorodnych subklonów komórek przekłada się również na różną skuteczność poszczególnych strategii terapeutycznych oraz implikuje potrzebę określenia czynników stratyfikacji ryzyka, które umożliwiłyby personalizację i optymalizację terapii. Idealnym narzędziem umożliwiającym ocenę ewolucji klonalnej PCM jest technika sekwencjonowania następnej generacji. Pozwala ona zidentyfikować mutacje sprawcze warunkujące agresywność rozrostu danego klonu komórek, a dodatkowo umożliwia ocenę minimalnej choroby resztkowej (MRD) z bardzo wysoką czułością, trudną do osiągnięcia rutynowymi metodami diagnostycznymi. Uzyskiwane obecnie wyniki oznaczania MRD mają znaczenie głównie prognostyczne, jednak w bliskiej przyszłości z dużym prawdopodobieństwem będą one podstawą indywidualizacji terapii. Zrozumienie tego, jak zmiany genetyczne przyczyniają się do ewolucji klonalnej, a tym samym rozwoju oporności PCM, pozwoli w przyszłości na przełamanie choroby opornej oraz zapobieżenie jej powstawaniu.

Streszczenie

Szpiczak plazmocytowy (PCM) jest chorobą nowotworową charakteryzującą się klonalną proliferacją plazmocytów w szpiku kostnym lub narządach pozaszpikowych. Rodzaj zaburzeń molekularnych, szczególnie wtórnych, kształtuje tempo progresji tego nowotworu i różnorodność obrazu klinicznego u poszczególnych chorych. Choroba stanowi idealny model do badania zjawiska heterogenności wewnątrzklonalnej ze względu na wysoki stopień zróżnicowania genetycznego klonu nowotworowego. Proces ewolucji wewnątrzklonalnej odgrywa podstawową rolę w transformacji nowotworowej i progresji gammapatii o nieokreślonym znaczeniu oraz bezobjawowego szpiczaka tlącego się do postaci objawowej. Istnienie różnorodnych subklonów komórek przekłada się również na różną skuteczność poszczególnych strategii terapeutycznych oraz implikuje potrzebę określenia czynników stratyfikacji ryzyka, które umożliwiłyby personalizację i optymalizację terapii. Idealnym narzędziem umożliwiającym ocenę ewolucji klonalnej PCM jest technika sekwencjonowania następnej generacji. Pozwala ona zidentyfikować mutacje sprawcze warunkujące agresywność rozrostu danego klonu komórek, a dodatkowo umożliwia ocenę minimalnej choroby resztkowej (MRD) z bardzo wysoką czułością, trudną do osiągnięcia rutynowymi metodami diagnostycznymi. Uzyskiwane obecnie wyniki oznaczania MRD mają znaczenie głównie prognostyczne, jednak w bliskiej przyszłości z dużym prawdopodobieństwem będą one podstawą indywidualizacji terapii. Zrozumienie tego, jak zmiany genetyczne przyczyniają się do ewolucji klonalnej, a tym samym rozwoju oporności PCM, pozwoli w przyszłości na przełamanie choroby opornej oraz zapobieżenie jej powstawaniu.
Pobierz cytowanie

Słowa kluczowe

sekwencjonowanie następnej generacji, heterogenność klonalna, szpiczak plazmocytowy, choroba resztkowa

Informacje o artykule
Tytuł

Zastosowanie sekwencjonowania następnej generacji do oceny heterogenności klonalnej oraz minimalnej choroby resztkowej u chorych na szpiczaka plazmocytowego

Czasopismo

Hematologia

Numer

Tom 10, Nr 2 (2019)

Strony

75-86

Data publikacji on-line

2019-06-17

DOI

10.5603/Hem.a2019.0019

Rekord bibliograficzny

Hematologia 2019;10(2):75-86.

Słowa kluczowe

sekwencjonowanie następnej generacji
heterogenność klonalna
szpiczak plazmocytowy
choroba resztkowa

Autorzy

Iwona Solarska
Bartosz Puła
Agnieszka Krzywdzińska
Krzysztof Jamroziak

Referencje (59)
  1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011; 364(11): 1046–1060.
  2. Manier S, Salem KZ, Park J, et al. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017; 14(2): 100–113.
  3. Salomon-Perzyński A, Jamroziak K. The role of daratumumab in the treatment of relapsed/refractory plasma cell myeloma. Hematologia. 2017; 8(4): 255–264.
  4. Dmoszyńska A, Usnarska-Zubkiewicz L, Walewski J, et al. Zalecenia Polskiej Grupy Szpiczakowej dotyczące rozpoznawania i leczenia szpiczaka plazmocytowego oraz innych dyskrazji plazmocytowych na rok 2017. Acta Haematol Pol. 2017; 48(2): 55–103.
  5. Robiou du Pont S, Cleynen A, Fontan C, et al. Genomics of multiple myeloma. J Clin Oncol. 2017; 35(9): 963–967.
  6. Tiedemann RE, Gonzalez-Paz N, Kyle RA, et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia. 2008; 22(5): 1044–1052.
  7. González D, van der Burg M, García-Sanz R, et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood. 2007; 110(9): 3112–3121.
  8. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014; 5: 2997.
  9. Szczepanski T, van 't Veer MB, Wolvers-Tettero IL, et al. Molecular features responsible for the absence of immunoglobulin heavy chain protein synthesis in an IgH(-) subgroup of multiple myeloma. Blood. 2000; 96(3): 1087–1093.
  10. Swedin A, Lenhoff S, Olofsson T, et al. Clinical utility of immunoglobulin heavy chain gene rearrangement identification for tumour cell detection in multiple myeloma. Br J Haematol. 1998; 103(4): 1145–1151.
  11. Hervé AL, Florence M, Philippe M, et al. Molecular heterogeneity of multiple myeloma: pathogenesis, prognosis, and therapeutic implications. J Clin Oncol. 2011; 29(14): 1893–1897.
  12. Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003; 101(11): 4569–4575.
  13. Avet-Loiseau H, Gerson F, Magrangeas F, et al. Intergroupe Francophone du Myélome. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood. 2001; 98(10): 3082–3086.
  14. Chang H, Qi C, Yi QL, et al. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood. 2005; 105(1): 358–360.
  15. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009; 23(12): 2210–2221.
  16. Fonseca R, Debes-Marun CS, Picken EB, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood. 2003; 102(7): 2562–2567.
  17. Debes-Marun CS, Dewald GW, Bryant S, et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia. 2003; 17(2): 427–436.
  18. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011; 471(7339): 467–472.
  19. Van Wier S, Braggio E, Baker A, et al. Hypodiploid multiple myeloma is characterized by more aggressive molecular markers than non-hyperdiploid multiple myeloma. Haematologica. 2013; 98(10): 1586–1592.
  20. Prideaux SM, Conway O'Brien E, Chevassut TJ. The genetic architecture of multiple myeloma. Adv Hematol. 2014; 2014: 864058.
  21. Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006; 108(5): 1724–1732.
  22. Leone PE, Walker BA, Jenner MW, et al. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin Cancer Res. 2008; 14(19): 6033–6041.
  23. Dutta AK, Hewett DR, Fink JL, et al. Cutting edge genomics reveal new insights into tumour development, disease progression and therapeutic impacts in multiple myeloma. Br J Haematol. 2017; 178(2): 196–208.
  24. Johnson DC, Lenive O, Mitchell J, et al. Neutral tumor evolution in myeloma is associated with poor prognosis. Blood. 2017; 130(14): 1639–1643.
  25. Williams MJ, Werner B, Barnes CP, et al. Identification of neutral tumor evolution across cancer types. Nat Genet. 2016; 48(3): 238–244.
  26. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018; 32(12): 2604–2616.
  27. Laganà A, Perumal D, Melnekoff D, et al. Integrative network analysis identifies novel drivers of pathogenesis and progression in newly diagnosed multiple myeloma. Leukemia. 2018; 32(1): 120–130.
  28. Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017; 8(1): 268.
  29. Jamroziak K, Krzywdzińska A, Solarska I, et al. Znaczenie minimalnej choroby resztkowej w szpiczaku plazmocytowym — Stanowisko Polskiego Konsorcjum Szpiczakowego. Hematologia. 2018; 8(4): 246–254.
  30. Krzywdzińska A, Solarska. I, Puła B, et al. Praktyka kliniczna oceny minimalnej choroby resztkowej u chorych na szpiczaka plazmocytowego w Polsce: badanie ankietowe Polskiego Konsorcjum Szpiczakowego. Hematologia. 2017; 8(4): 239–245.
  31. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016; 17(8): e328–e346.
  32. Martinez-Lopez J, Fernández-Redondo E, García-Sánz R, et al. GEM (Grupo Español Multidisciplinar de Melanoma)/PETHEMA (Programa para el Estudio de la Terapéutica en Hemopatías Malignas) cooperative study group. Clinical applicability and prognostic significance of molecular response assessed by fluorescent-PCR of immunoglobulin genes in multiple myeloma. Results from a GEM/PETHEMA study. Br J Haematol. 2013; 163(5): 581–589.
  33. Sanchez-Vega B, Ayala R, Cedena T. Minimal residual disease testing for multiple myeloma. Hematologia. 2017; 8(3): 219–227.
  34. Rihova L, Hajek R. Flow cytometric minimal residual disease assessment in multiple myeloma. Hematologia. 2017; 8(3): 211–218.
  35. Galimberti S, Brizzi F, Mameli M, et al. An advantageous method to evaluate IgH rearrangement and its role in minimal residual disease detection. Leuk Res. 1999; 23(10): 921–929.
  36. Brisco MJ, Condon J, Hughes E, et al. Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet. 1994; 343(8891): 196–200.
  37. Billadeau D, Blackstadt M, Greipp P, et al. Analysis of B-lymphoid malignancies using allele-specific polymerase chain reaction: a technique for sequential quantitation of residual disease. Blood. 1991; 78(11): 3021–3029.
  38. Owen RG, Johnson RJ, Rawstron AC, et al. Assessment of IgH PCR strategies in multiple myeloma. J Clin Pathol. 1996; 49(8): 672–675.
  39. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014; 123(20): 3073–3079.
  40. Ladetto M, Donovan JW, Harig S, et al. Real-Time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in multiple myeloma. Biol Blood Marrow Transplant. 2000; 6(3): 241–253.
  41. Rasmussen T, Poulsen TS, Honoré L, et al. Quantitation of minimal residual disease in multiple myeloma using an allele-specific real-time PCR assay. Exp Hematol. 2000; 28(9): 1039–1045.
  42. van Dongen JJM, Langerak AW, Brüggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003; 17(12): 2257–2317.
  43. van der Velden VHJ, Hochhaus A, Cazzaniga G, et al. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003; 17(6): 1013–1034.
  44. Pongers-Willemse MJ, Seriu T, Stolz F, et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia. 1999; 13(1): 110–118.
  45. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. 1998; 12(12): 2006–2014.
  46. Puig N, Sarasquete ME, Balanzategui A, et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014; 28(2): 391–397.
  47. Bakkus MHC, Bouko Y, Samson D, et al. Post-transplantation tumour load in bone marrow, as assessed by quantitative ASO-PCR, is a prognostic parameter in multiple myeloma. Br J Haematol. 2004; 126(5): 665–674.
  48. Lipinski E, Cremer FW, Ho AD, et al. Molecular monitoring of the tumor load predicts progressive disease in patients with multiple myeloma after high-dose therapy with autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 2001; 28(10): 957–962.
  49. Galimberti S, Benedetti E, Morabito F, et al. Prognostic role of minimal residual disease in multiple myeloma patients after non-myeloablative allogeneic transplantation. Leuk Res. 2005; 29(8): 961–966.
  50. Lioznov M, Badbaran A, Fehse B, et al. Monitoring of minimal residual disease in multiple myeloma after allo-SCT: flow cytometry vs PCR-based techniques. Bone Marrow Transplant. 2008; 41(10): 913–916.
  51. Sarasquete ME, García-Sanz R, González D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005; 90(10): 1365–1372.
  52. Martínez-Sánchez P, Montejano L, Sarasquete ME, et al. Evaluation of minimal residual disease in multiple myeloma patients by fluorescent-polymerase chain reaction: the prognostic impact of achieving molecular response. Br J Haematol. 2008; 142(5): 766–774.
  53. Faham M, Zheng J, Moorhead M, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012; 120(26): 5173–5180.
  54. Gawad C, Pepin F, Carlton VEH, et al. Massive evolution of the immunoglobulin heavy chain locus in children with B precursor acute lymphoblastic leukemia. Blood. 2012; 120(22): 4407–4417.
  55. Logan AC, Zhang B, Narasimhan B, et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia. 2013; 27(8): 1659–1665.
  56. Martinez-Lopez J, Sanchez-Vega B, Barrio S, et al. Analytical and clinical validation of a novel in-house deep-sequencing method for minimal residual disease monitoring in a phase II trial for multiple myeloma. Leukemia. 2017; 31(6): 1446–1449.
  57. Ladetto M, Brüggemann M, Monitillo L, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014; 28(6): 1299–1307.
  58. Kazandjian D, Korde N, Mailankody S, et al. Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol. 2015; 1(6): 746–754.
  59. Avet-Loiseau H, Corre J, Lauwers-Cances V, et al. Evaluation of minimal residual disease (MRD) by next generation sequencing (NGS) is highly predictive of progression free survival in the IFM/DFCI 2009 trial. Blood. 2015; 126(23): 191.

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl