Tom 10, Nr 1 (2019)
PRACE POGLĄDOWE
Opublikowany online: 2019-06-19
Pobierz cytowanie

Metylotransferaza EZH2 jako cel terapeutyczny w nowotworach układu chłonnego

Beata Pytlak, Maria Chraszczewska, Monika Prochorec-Sobieszek, Anna Szumera-Ciećkiewicz
DOI: 10.5603/Hem.2019.0012
·
Hematologia 2019;10(1):9-18.

dostęp płatny

Tom 10, Nr 1 (2019)
PRACE POGLĄDOWE
Opublikowany online: 2019-06-19

Streszczenie

Metylotransferaza EZH2 jest katalityczną podjednostką kompleksu PRC2, która przeprowadza reakcję metylacji lizyny w pozycji 27 histonu 3, prowadząc do powstania jej trimetylowanej formy H3K27me. EZH2 jest jednym z białek Polycomb, które są głównymi czynnikami epigenetycznymi i odpowiadają za wyciszanie i inaktywację genów. Enzym ten pełni podwójną funkcję w etiopatogenezie nowotworów — jest zarówno onkogenem, jak i genem supresorowym. Nieprawidłowości wynikające z nadekspresji bądź mutacji w genach kodujących EZH2 wykazano zarówno u pacjentów chorujących na nowotwory hematologiczne, jak i u osób cierpiących na inne nowotwory. W związku z pojawiającą się potrzebą leczenia takich chorych rozpoczęto badania nad cząsteczkami skierowanymi przeciwko kompleksowi PRC2, w szczególności przeciwko EZH1/EZH2. Przełomowymi w rozwoju terapii celowanej inhibitorami metylotransferazy EZH2 okazało się odkrycie związków silnie selektywnych i zawierających w swojej budowie chemicznej ugrupowanie 2-pirydynowe. W pracy zwrócono uwagę na najnowsze odkrycia dotyczące onkogennych funkcji metylotransferazy EZH2 oraz przedstawiono ich wpływ na rozwój nowotworów. Ponadto zawarto aktualne informacje odnośnie do badań przedklinicznych oraz klinicznych w testowaniu inhibitorów EZH2 głównie w nowotworach hematologicznych. 

Streszczenie

Metylotransferaza EZH2 jest katalityczną podjednostką kompleksu PRC2, która przeprowadza reakcję metylacji lizyny w pozycji 27 histonu 3, prowadząc do powstania jej trimetylowanej formy H3K27me. EZH2 jest jednym z białek Polycomb, które są głównymi czynnikami epigenetycznymi i odpowiadają za wyciszanie i inaktywację genów. Enzym ten pełni podwójną funkcję w etiopatogenezie nowotworów — jest zarówno onkogenem, jak i genem supresorowym. Nieprawidłowości wynikające z nadekspresji bądź mutacji w genach kodujących EZH2 wykazano zarówno u pacjentów chorujących na nowotwory hematologiczne, jak i u osób cierpiących na inne nowotwory. W związku z pojawiającą się potrzebą leczenia takich chorych rozpoczęto badania nad cząsteczkami skierowanymi przeciwko kompleksowi PRC2, w szczególności przeciwko EZH1/EZH2. Przełomowymi w rozwoju terapii celowanej inhibitorami metylotransferazy EZH2 okazało się odkrycie związków silnie selektywnych i zawierających w swojej budowie chemicznej ugrupowanie 2-pirydynowe. W pracy zwrócono uwagę na najnowsze odkrycia dotyczące onkogennych funkcji metylotransferazy EZH2 oraz przedstawiono ich wpływ na rozwój nowotworów. Ponadto zawarto aktualne informacje odnośnie do badań przedklinicznych oraz klinicznych w testowaniu inhibitorów EZH2 głównie w nowotworach hematologicznych. 
Pobierz cytowanie

Słowa kluczowe

metylotransferaza EZH2; inhibitory EZH2; biologia molekularna i genetyka chłoniaków

Informacje o artykule
Tytuł

Metylotransferaza EZH2 jako cel terapeutyczny w nowotworach układu chłonnego

Czasopismo

Hematologia

Numer

Tom 10, Nr 1 (2019)

Strony

9-18

Data publikacji on-line

2019-06-19

DOI

10.5603/Hem.2019.0012

Rekord bibliograficzny

Hematologia 2019;10(1):9-18.

Słowa kluczowe

metylotransferaza EZH2
inhibitory EZH2
biologia molekularna i genetyka chłoniaków

Autorzy

Beata Pytlak
Maria Chraszczewska
Monika Prochorec-Sobieszek
Anna Szumera-Ciećkiewicz

Referencje (55)
  1. Fioravanti R, Stazi G, Zwergel C, et al. Six Years (2012-2018) of Researches on Catalytic EZH2 Inhibitors: The Boom of the 2-Pyridone Compounds. Chem Rec. 2018; 18(12): 1818–1832.
  2. Wen Y, Cai J, Hou Y, et al. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget. 2017; 8(23): 37974–37990.
  3. Gan Lu, Yang Y, Li Q, et al. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark Res. 2018; 6: 10.
  4. Andricovich J, Kai Y, Peng W, et al. Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis. J Clin Invest. 2016; 126(3): 905–920.
  5. He A, Shen X, Ma Q, et al. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev. 2012; 26(1): 37–42.
  6. Lee JiM, Lee JS, Kim H, et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell. 2012; 48(4): 572–586.
  7. Gunawan M, Venkatesan N, Loh JT, et al. The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat Immunol. 2015; 16(5): 505–516.
  8. Kim E, Kim M, Woo DH, et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell. 2013; 23(6): 839–852.
  9. Lee ST, Li Z, Wu Z, et al. Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol Cell. 2011; 43(5): 798–810.
  10. Xu K, Wu ZJ, Groner AC, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science. 2012; 338(6113): 1465–1469.
  11. Jung HY, Jun S, Lee M, et al. PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation. Mol Cell. 2013; 52(2): 193–205.
  12. Yan J, Ng SB, Tay JLS, et al. EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood. 2013; 121(22): 4512–4520.
  13. Zhang K, Zhang Y, Ren K, et al. MicroRNA-101 inhibits the metastasis of osteosarcoma cells by downregulation of EZH2 expression. Oncol Rep. 2014; 32(5): 2143–2149.
  14. Wang HJ, Ruan HJ, He XJ, et al. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer. 2010; 46(12): 2295–2303.
  15. Varambally S, Cao Qi, Mani RS, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008; 322(5908): 1695–1699.
  16. Han Li C, Chen Y. Targeting EZH2 for cancer therapy: progress and perspective. Curr Protein Pept Sci. 2015; 16(6): 559–570.
  17. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002; 419(6907): 624–629.
  18. Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010; 42(2): 181–185.
  19. van Haaften G, Dalgliesh GL, Davies H, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009; 41(5): 521–523.
  20. McCabe MT, Graves AP, Ganji G, et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci U S A. 2012; 109(8): 2989–2994.
  21. Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med. 2016; 22(2): 128–134.
  22. Yamagishi M, Uchimaru K. Targeting EZH2 in cancer therapy. Curr Opin Oncol. 2017; 29(5): 375–381.
  23. Majer CR, Jin L, Scott MP, et al. A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett. 2012; 586(19): 3448–3451.
  24. Kadoch C, Hargreaves DC, Hodges C, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013; 45(6): 592–601.
  25. Wilson BG, Wang Xi, Shen X, et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell. 2010; 18(4): 316–328.
  26. Dubois S, Mareschal S, Picquenot JM, et al. Immunohistochemical and genomic profiles of diffuse large B-cell lymphomas: implications for targeted EZH2 inhibitor therapy? Oncotarget. 2015; 6(18): 16712–16724.
  27. Bödör C, Grossmann V, Popov N, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013; 122(18): 3165–3168.
  28. Huet S, Xerri L, Tesson B, et al. EZH2 alterations in follicular lymphoma: biological and clinical correlations. Blood Cancer J. 2017; 7(4): e555.
  29. Tian X, Pelton A, Shahsafaei A, et al. Differential expression of enhancer of zeste homolog 2 (EZH2) protein in small cell and aggressive B-cell non-Hodgkin lymphomas and differential regulation of EZH2 expression by p-ERK1/2 and MYC in aggressive B-cell lymphomas. Mod Pathol. 2016; 29(9): 1050–1057.
  30. Sashida G, Harada H, Matsui H, et al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun. 2014; 5: 4177.
  31. Cabrero M, Wei Y, Yang H, et al. Down-regulation of EZH2 expression in myelodysplastic syndromes. Leuk Res. 2016; 44: 1–7.
  32. McGraw K, Nguyen J, Ali NAl, et al. Association of EZH2 protein expression by immunohistochemistry in myelodysplasia related neoplasms with mutation status, cytogenetics and clinical outcomes. Br J Haematol. 2018; 184(3): 450–455.
  33. Pawlyn C, Bright MD, Buros AF, et al. Overexpression of EZH2 in multiple myeloma is associated with poor prognosis and dysregulation of cell cycle control. Blood Cancer J. 2017; 7(3): e549.
  34. Chase A, Cross NCP. Aberrations of EZH2 in cancer. Clin Cancer Res. 2011; 17(9): 2613–2618.
  35. Pourakbar S, Pluard TJ, Accurso AD, et al. Ezh2, a novel target in detection and therapy of breast cancer. Onco Targets Ther. 2017; 10: 2685–2687.
  36. Chen Z, Yang P, Li W, et al. Expression of EZH2 is associated with poor outcome in colorectal cancer. Oncol Lett. 2018; 15(3): 2953–2961.
  37. Vilorio-Marqués L, Martín V, Diez-Tascón C, et al. The role of EZH2 in overall survival of colorectal cancer: a meta-analysis. Sci Rep. 2017; 7(1): 13806.
  38. Changchien YC, Tátrai P, Papp G, et al. Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). J Transl Med. 2012; 10: 216.
  39. Tang SH, Huang HS, Wu HU, et al. Pharmacologic down-regulation of EZH2 suppresses bladder cancer in vitro and in vivo. Oncotarget. 2014; 5(21): 10342–10355.
  40. Jiang X, Lim CZ, Li Z, et al. Functional Characterization of D9, a Novel Deazaneplanocin A (DZNep) Analog, in Targeting Acute Myeloid Leukemia (AML). PLoS One. 2015; 10(4): e0122983.
  41. Knutson SK, Wigle TJ, Warholic NM, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol. 2012; 8(11): 890–896.
  42. Qi W, Chan H, Teng L, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A. 2012; 109(52): 21360–21365.
  43. Konze KD, Ma A, Li F, et al. An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chem Biol. 2013; 8(6): 1324–1334.
  44. Xu B, On DM, Ma A, et al. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood. 2015; 125(2): 346–357.
  45. Grinshtein N, Rioseco CC, Marcellus R, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016; 7(37): 59360–59376.
  46. Knutson SK, Warholic NM, Wigle TJ, et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A. 2013; 110(19): 7922–7927.
  47. Campbell JE, Kuntz KW, Knutson SK, et al. EPZ011989, A Potent, Orally-Available EZH2 Inhibitor with Robust in Vivo Activity. ACS Med Chem Lett. 2015; 6(5): 491–495.
  48. Song X, Gao T, Wang N, et al. Selective inhibition of EZH2 by ZLD1039 blocks H3K27 methylation and leads to potent anti-tumor activity in breast cancer. Sci Rep. 2016; 6: 20864.
  49. Lu B, Shen X, Zhang L, et al. Discovery of EBI-2511: A Highly Potent and Orally Active EZH2 Inhibitor for the Treatment of Non-Hodgkin's Lymphoma. ACS Med Chem Lett. 2018; 9(2): 98–102.
  50. Honma D, Kanno O, Watanabe J, et al. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci. 2017; 108(10): 2069–2078.
  51. Mellini P, Marrocco B, Borovika D, et al. Pyrazole-based inhibitors of enhancer of zeste homologue 2 induce apoptosis and autophagy in cancer cells. Philos Trans R Soc Lond B Biol Sci. 2018; 373(1748).
  52. Miele E, Valente S, Alfano V, et al. The histone methyltransferase EZH2 as a druggable target in SHH medulloblastoma cancer stem cells. Oncotarget. 2017; 8(40): 68557–68570.
  53. Bradley WD, Arora S, Busby J, et al. EZH2 inhibitor efficacy in non-Hodgkin's lymphoma does not require suppression of H3K27 monomethylation. Chem Biol. 2014; 21(11): 1463–1475.
  54. Gehling VS, Vaswani RG, Nasveschuk CG, et al. Discovery, design, and synthesis of indole-based EZH2 inhibitors. Bioorg Med Chem Lett. 2015; 25(17): 3644–3649.
  55. Vaswani RG, Gehling VS, Dakin LA, et al. Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a Potent and Selective Inhibitor of Histone Methyltransferase EZH2, Suitable for Phase I Clinical Trials for B-Cell Lymphomas. J Med Chem. 2016; 59(21): 9928–9941.

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl