Vol 8, No 3 (2017)
Review paper
Published online: 2017-11-23

open access

Page views 3290
Article views/downloads 21339
Get Citation

Connect on Social Media

Connect on Social Media

Nutritional support in patients with breast cancer

Agata Lewandowska1, Alicja Elżbieta Woźniak1
Hematologia 2017;8(3):197-210.

Abstract

In women, breast cancer is the most common malignancy whilst its morbidity rates are the second most frequent after lung cancer. Rearrangements of developmental changes in mammary gland tissue that occur many times throughout life (eg. during puberty, pregnancy), create a specific environment as demonstrated by an enhanced immune response but suppressed inflammatory status; these being most likely conducive to carcinogenesis. Contributing factors to breast cancer development include: endocrine disruption, genetic predisposition and environmental determinants such as overweight and low levels of physical activity. Hitherto, nutritional guidelines in cases of breast cancer remission are lacking, nevertheless specialists state that they should be based on primary prevention. The presence of cancer confers changes to dietary requirements, whilst the side effects of treatment are gastro-intestinal disorders and anorexia which lead to malnourishment. A modified diet may thus beneficially impact upon women’s quality of life during breast cancer remission, together with potentially improving their survival prognoses.

References

  1. Wojciechowska U, Olasek P, Czauderna K, Didkowska J. Nowotwory złośliwe w Polsce w 2014 roku. Centrum Onkologii – Instytut. , Warszawa 2016.
  2. Ferlay J., Soerjomataram I., Ervik M., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from. http://globocan.iarc.fr (2013).
  3. O'Brien J, Martinson H, Durand-Rougely C, et al. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2012; 139(2): 269–275.
  4. Stein T, Salomonis N, Nuyten DSA, et al. A mouse mammary gland involution mRNA signature identifies biological pathways potentially associated with breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2009; 14(2): 99–116.
  5. Law AMK, Lim E, Ormandy CJ, et al. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocr Relat Cancer. 2017; 24(4): R123–R144.
  6. Lakhani S, Ellis I, Schnitt S, et al. 4th. Lyon: IARC Press; 2012. WHO Classification of Tumours of the Breast. 2012.
  7. Shao M, Hollar S, Chambliss D, et al. Targeting the insulin growth factor and the vascular endothelial growth factor pathways in ovarian cancer. Mol Cancer Ther. 2012; 11(7): 1576–1586.
  8. Dębska S, Potemski P. Leczenia hormonalne chorych na raka piersi z nadekspresją receptora HER2. Onkol Prak Klin. 2010; 6: 301–310.
  9. Noruzinia M, Coupier I, Pujol P. Is BRCA1/BRCA2-related breast carcinogenesis estrogen dependent? Cancer. 2005; 104(8): 1567–1574.
  10. Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer. 2015; 14: 43.
  11. Parl FF, Egan KM, Li C, et al. Estrogen exposure, metabolism, and enzyme variants in a model for breast cancer risk prediction. Cancer Inform. 2009; 7: 109–121.
  12. Goździcka-Józefiak A, Bobowicz MA, Kędzia H. Geny a nowotwory. W: Genetyka molekularna i biochemia wybranych chorób u ludzi. UAM, Poznań 2001.
  13. Pertyński T, Stachowiak G. Menopauza – fakty i kontrowersje. Pol J Endocrinol. 2006; 57: 525–534.
  14. Custódio ID, Marinho Ed, Gontijo CA, et al. Impact of Chemotherapy on Diet and Nutritional Status of Women with Breast Cancer: A Prospective Study. PLoS One. 2016; 11(6): e0157113.
  15. Biela A, Pacholska-Bogacka J. Nowotwory hormonozależne u kobiet. Nowa Med. 2012; 4: 76–81.
  16. Gierach GL, Yang XR, Figueroa JD, et al. Emerging Concepts in Breast Cancer Risk Prediction. Curr Obstet Gynecol Rep. 2013; 2(1): 43–52.
  17. Jaśkiewicz J, Pieńkowski T. Rak piersi - rozpoznawanie, leczenie, profilaktyka. Przew Lek. 2000; 6: 47–53.
  18. Nowaczyk M. Rak piersi u kobiet. Krajowy Rejestr Nowotworów. http://onkologia.org.pl/rak-piersi-kobiet (26.04.2017).
  19. Niemiec J, Ryś J. Podtyp podstawny raka piersi – jednostka o specyficznej charakterystyce immunofenotypowej? Pol J Pathol. 2009; 3(Suplement 1): s36–s44.
  20. Krzakowski M, Warzocha K. Zalecenia postępowania diagnostyczno-terapeutycznego w nowotworach złośliwych. 2013 rok. ; 2013: 229.
  21. Deptała A, Wojtukiewicz MZ. Onkologia w praktyce lekarza rodzinnego. AsteriaMed, Gdańsk 2016.
  22. Beatson G. ON THE TREATMENT OF INOPERABLE CASES OF CARCINOMA OF THE MAMMA: SUGGESTIONS FOR A NEW METHOD OF TREATMENT, WITH ILLUSTRATIVE CASES.1. Lancet. 1896; 148(3802): 104–107.
  23. Krzakowski M. Podstawy kliniczne hormonoterapii nowotworów. In: Krzakowski M. ed. Onkologia kliniczna. Borgis, Warszawa 2001: 65–82.
  24. Winczura P, Senkus-Konefka E, Jassem J. Polskie i międzynarodowe zalecenia dotyczące leczenia raka piersi. NOWOTWORY J Oncol. 2013; 63: 58–65.
  25. Gajewski P, Szczeklik A. Interna Szczeklika. Podręcznik chorób wewnętrznych. Medycyna Praktyczna 2016: 2253.
  26. MacKay D, Miller AL. Nutritional support for wound healing. Altern Med Rev. 2003; 8(4): 359–377.
  27. Anderson K, Hamm RL. Factors That Impair Wound Healing. J Am Coll Clin Wound Spec. 2012; 4(4): 84–91.
  28. Schlemmer M, Suchner U, Schäpers B, et al. Is glutamine deficiency the link between inflammation, malnutrition, and fatigue in cancer patients? Clin Nutr. 2015; 34(6): 1258–1265.
  29. Cao Yu, Feng Y, Zhang Y, et al. L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer. 2016; 16: 343.
  30. Engelen MP, Klimberg VS, Allasia A, et al. PP288-SUN: Surgery Reduces DE Novo Arginine Production Independent of the Presence of Breast Cancer. Clin Nutr. 2014; 33: S127.
  31. Posthauer ME, Posthauer ME. The role of nutrition in wound care. Adv Skin Wound Care. 2006; 19(1): 43–52; quiz 53.
  32. Witte MB, Barbul A. Arginine physiology and its implication for wound healing. Wound Repair Regen. 2003; 11(6): 419–423.
  33. Ross V. Micronutrient recommendations form wound healing. Support Line. 2002; 24: 3–9.
  34. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007; 2(2): 219–236.
  35. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010; 89(3): 219–229.
  36. Fritsche KL. The science of fatty acids and inflammation. Adv Nutr. 2015; 6(3): 293S–301S.
  37. Zaborowska A. Opieka nad pacjentem poddawanym chemioterapii. In: Dębska G, Pasek M. ed. Interdyscyplinarna opieka nad pacjentem z chorobą nowotworową. Oficyna Wydawnicza AFM, Kraków 2011.
  38. Szajdek A, Borowska J. Właściwości przeciwutleniające żywności pochodzenia roślinnego. ŻNTJ. 2004; 4: 5–28.
  39. Paszkiewicz M, Budzyńska A, Różalska B. Immunomodulacyjna rola polifenoli roślinnych. Postepy Hig Med Dosw. 2012; 66: 637–646.
  40. de Aguiar Pastore Silva J, Emilia de Souza Fabre M, Waitzberg DL. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: A systematic review. Clin Nutr. 2015; 34(3): 359–366.
  41. Hugh Dunstan R, Sparkes DL, Macdonald MM, et al. Altered amino acid homeostasis and the development of fatigue by breast cancer radiotherapy patients: A pilot study. Clin Biochem. 2011; 44(2-3): 208–215.
  42. Beutheu S, Ouelaa W, Guérin C, et al. Glutamine supplementation, but not combined glutamine and arginine supplementation, improves gut barrier function during chemotherapy-induced intestinal mucositis in rats. Clin Nutr. 2014; 33(4): 694–701.
  43. Różańska D, Regulska-Ilow B, Ilow R. Wpływ wybranych procesów kulinarnych na potencjał antyoksydacyjny i zawartość polifenoli w żywności. Probl Hig Epidemiol. 2014; 95: 215–222.
  44. Ramos Chaves M, Boléo-Tomé C, Monteiro-Grillo I, et al. The diversity of nutritional status in cancer: new insights. Oncologist. 2010; 15(5): 523–530.
  45. Mohammadi S, Sulaiman S, Koon PB, et al. Association of nutritional status with quality of life in breast cancer survivors. Asian Pac J Cancer Prev. 2013; 14(12): 7749–7755.
  46. Ravasco P, João DR. MON-LB010: What is the Pattern of Diet, Nutritional Status and Body Fat in Women With Breast Cancer? Clin Nutr. 2015; 34: S254.
  47. Zhang FF, Liu S, John EM, et al. Diet quality of cancer survivors and noncancer individuals: Results from a national survey. Cancer. 2015; 121(23): 4212–4221.
  48. Prado CMM, Baracos VE, McCargar LJ, et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res. 2009; 15(8): 2920–2926.
  49. Milliron BJ, Vitolins MZ, Tooze JA. Usual dietary intake among female breast cancer survivors is not significantly different from women with no cancer history: results of the National Health and Nutrition Examination Survey, 2003-2006. J Acad Nutr Diet. 2014; 114(6): 932–937.
  50. Zuniga KE, Mackenzie MJ, Roberts SA, et al. Relationship between fruit and vegetable intake and interference control in breast cancer survivors. Eur J Nutr. 2015; 55(4): 1555–1562.
  51. World Cancer Research Fund International/American Institute for Cancer Research Continuous Update Project Report: Diet, Nutrition, Physical Activity, and Breast Cancer Survivors 2014.
  52. Mourouti N, Kontogianni MD, Papavagelis C, et al. Diet and breast cancer: a systematic review. Int J Food Sci Nutr. 2015; 66(1): 1–42.
  53. Kotepui M. Diet and risk of breast cancer. Contemp Oncol (Pozn). 2016; 20(1): 13–19.
  54. Skowrońska B, Fichna M, Fichna P. Rola tkanki tłuszczowej w układzie endokrynnym. Endokrynologia. 2005; 1: 21–29.
  55. Schulz M, Hoffmann K, Weikert C, et al. Identification of a dietary pattern characterized by high-fat food choices associated with increased risk of breast cancer: the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br J Nutr. 2008; 100(5): 942–946.
  56. Prentice RL, Caan B, Chlebowski RT, et al. Low-fat dietary pattern and risk of invasive breast cancer: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA. 2006; 295(6): 629–642.
  57. Mansara PP, Deshpande RA, Vaidya MM, et al. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS One. 2015; 10(9): e0136542.
  58. Mansara P, Ketkar M, Deshpande R, et al. Improved antioxidant status by omega-3 fatty acid supplementation in breast cancer patients undergoing chemotherapy: a case series. J Med Case Rep. 2015; 9: 148.
  59. Filipczyk LM, Wystrychowski A. Wygaszanie reakcji zapalnej przez pochodne ω-3 i ω-6 wielonienasyconych kwasów tłuszczowych. Nefrol Dial Pol. 2011; 15: 43–52.
  60. Sun H, Berquin IM, Edwards IJ. Omega-3 polyunsaturated fatty acids regulate syndecan-1 expression in human breast cancer cells. Cancer Res. 2005; 65(10): 4442–4447.
  61. Boyd NF, Stone J, Vogt KN, et al. Dietary fat and breast cancer risk revisited: a meta-analysis of the published literature. Br J Cancer. 2003; 89(9): 1672–1685.
  62. Knize MG, Felton JS. Formation and human risk of carcinogenic heterocyclic amines formed from natural precursors in meat. Nutr Rev. 2005; 63(5): 158–165.
  63. Majcherczyk J, Surówka K. Heterocykliczne aminy aromatyczne jako zagrożenie w produktach mięsnych poddawanych obróbce termicznej. ŻNTJ. 2015; 1: 16–34.
  64. Barnard RJ. Prostate cancer prevention by nutritional means to alleviate metabolic syndrome. Am J Clin Nutr. 2007; 86(3): s889–s893.
  65. Crowe FL, Key TJ, Allen NE, et al. The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2009; 18(5): 1333–1340.
  66. Gupta K, Krishnaswamy G, Karnad A, et al. Insulin: a novel factor in carcinogenesis. Am J Med Sci. 2002; 323(3): 140–145.
  67. Kacalska O, Krzyczkowsk-Sendrakowska M, Milewicz T. Molekularne podstawy antynowotworowego działania uwrażliwiaczy na insulinę. Endokrynol Pol. 2005; 3: 308–313.
  68. Hinderliter AL, Babyak MA, Sherwood A, et al. The DASH diet and insulin sensitivity. Curr Hypertens Rep. 2011; 13(1): 67–73.
  69. Bindels LB, Walter J, Ramer-Tait AE. Resistant starches for the management of metabolic diseases. Curr Opin Clin Nutr Metab Care. 2015; 18(6): 559–565.
  70. Romieu I, Ferrari P, Rinaldi S, et al. Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. 2012; 96(2): 345–355.
  71. Craig W. Nutrition Concerns and Health Effects of Vegetarian Diets. Nutr Clin Pract. 2010; 25(6): 613–620.
  72. Marsh KA, Munn EA, Baines SK. Protein and vegetarian diets. Med J Aust. 2013; 199(4 Suppl): S7–SS10.
  73. Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013; 12: 103.
  74. Regulska K, Stanisz B, Regulski M. Indywidualizacja terapii przeciwnowotworowej; molekularne uwarunkowania mechanizmów działania nowoczesnych leków onkologicznych. Postepy Hig Med Dosw. (online. 2012; 66: 855–867.
  75. Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer. 2011; 30(6): 371–380.
  76. Yang J, Chi Y, Burkhardt BR, et al. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev. 2010; 68(5): 270–279.
  77. Hoppe C, Mølgaard C, Dalum C, et al. Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. Eur J Clin Nutr. 2009; 63(9): 1076–1083.
  78. Melnik BC, John SM, Schmitz G. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome. Nutr Metab (Lond). 2011; 8: 41.
  79. Kunachowicz H. Tabele składu i wartości odżywczej żywności. Wydawnictwo Lekarskie PZWL Wraszawa. ; 2005.
  80. Goelz R, Hihn E, Hamprecht K, et al. Effects of different CMV-heat-inactivation-methods on growth factors in human breast milk. Pediatr Res. 2009; 65(4): 458–461.
  81. Bakker MF, Peeters PHm, Klaasen VM, et al. Plasma carotenoids, vitamin C, tocopherols, and retinol and the risk of breast cancer in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2016; 103(2): 454–464.
  82. Baena Ruiz R, Salinas Hernández P. Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence. Maturitas. 2016; 94: 13–19.
  83. Milani A, Basirnejad M, Shahbazi S, et al. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol. 2017; 174(11): 1290–1324.
  84. Eliassen AH, Hendrickson SJ, Brinton LA, et al. Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J Natl Cancer Inst. 2012; 104(24): 1905–1916.
  85. Qin LQ, Xu JY, Wang PY, et al. Soyfood intake in the prevention of breast cancer risk in women: a meta-analysis of observational epidemiological studies. J Nutr Sci Vitaminol (Tokyo). 2006; 52(6): 428–436.
  86. Trock BJ, Hilakivi-Clarke L, Clarke R. Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst. 2006; 98(7): 459–471.
  87. World Cancer Research Fund / American Institute for Cancer Research. Continuous Update Project Report. Food, Nutrition, Physical Activity, and the Prevention of Breast Cancer 2010.
  88. Travier N, Fonseca-Nunes A, Javierre C, et al. Effect of a diet and physical activity intervention on body weight and nutritional patterns in overweight and obese breast cancer survivors. Med Oncol. 2014; 31(1): 783.



Hematology in Clinical Practice