Tom 11, Nr 3 (2020)
Artykuł przeglądowy
Opublikowany online: 2020-09-28
Pobierz cytowanie

Innowacyjna terapia CAR-T w leczeniu nowotworów hematologicznych — wybrane aspekty genetyczne i immunologiczne

Katarzyna Karwicka, Joanna Wawer, Olga Czabak, Janusz Kocki, Marek Hus
DOI: 10.5603/Hem.a2020.0025
·
Hematologia 2020;11(3):166-182.

dostęp płatny

Tom 11, Nr 3 (2020)
PRACE POGLĄDOWE
Opublikowany online: 2020-09-28

Streszczenie

Terapia polegająca na genetycznej modyfikacji limfocytów T, która prowadzi do ekspresji chimerycznego receptora antygenu (CAR), stała się niedawno jednym z najbardziej obiecujących metod terapii nowotworów hematologicznych. Przeprogramowane limfocyty T rozpoznają określone antygeny na powierzchni komórek docelowych, co w konsekwencji wyzwala ich aktywację niezależną od MHC. Odpowiednia selektywność antygenowa i sygnalizacja wewnątrzkomórkowa wykorzystywana jest do zabijania komórek nowotworowych. Zastosowanie limfocytów CAR-T anty-CD19 w przypadku DLBCL oraz ALL radykalnie zmieniło sposób leczenia nowotworów limfoidalnych u pacjentów z nawrotem lub opornością na standardowe terapie. Transdukcja genetyczna obejmuje nie tylko białko fuzyjne CAR modyfikowane za pomocą retrowirusa lub lentiwirusa, ale także domeny kostymulujące, geny samobójcze, transgeny do produkcji dodatkowych cząsteczek efektorowych, bispecyficzne CAR oraz inhibitory punktów kontrolnych. Stosowane są również nowoczesne technologie inżynierii genetycznej do edycji genów, na przykład TALEN lub CRISPR/Cas9. Celem tych nowoczesnych technik jest zwiększenie odsetka odpowiedzi i wydłużenie czasu trwania remisji, ukierunkowanie terapii na nowe jednostki chorobowe, zmniejszenie toksyczności i stworzenie „uniwersalnych komórek CAR-T”. Potencjalne mechanizmy niepowodzenia terapii limfocytami CAR-T obejmują ucieczkę nowotworu spod nadzoru immunologicznego (np. poprzez utratę ekspresji CD19), immunosupresyjne mikrośrodowisko, wyczerpanie limfocytów CAR-T lub zmniejszenie ich aktywności. W pracy opisano również toksyczność CAR-T oraz potencjalne sposoby zapobiegania lub leczenia niebezpiecznych, czy zagrażających życiu zdarzeń niepożądanych.

Streszczenie

Terapia polegająca na genetycznej modyfikacji limfocytów T, która prowadzi do ekspresji chimerycznego receptora antygenu (CAR), stała się niedawno jednym z najbardziej obiecujących metod terapii nowotworów hematologicznych. Przeprogramowane limfocyty T rozpoznają określone antygeny na powierzchni komórek docelowych, co w konsekwencji wyzwala ich aktywację niezależną od MHC. Odpowiednia selektywność antygenowa i sygnalizacja wewnątrzkomórkowa wykorzystywana jest do zabijania komórek nowotworowych. Zastosowanie limfocytów CAR-T anty-CD19 w przypadku DLBCL oraz ALL radykalnie zmieniło sposób leczenia nowotworów limfoidalnych u pacjentów z nawrotem lub opornością na standardowe terapie. Transdukcja genetyczna obejmuje nie tylko białko fuzyjne CAR modyfikowane za pomocą retrowirusa lub lentiwirusa, ale także domeny kostymulujące, geny samobójcze, transgeny do produkcji dodatkowych cząsteczek efektorowych, bispecyficzne CAR oraz inhibitory punktów kontrolnych. Stosowane są również nowoczesne technologie inżynierii genetycznej do edycji genów, na przykład TALEN lub CRISPR/Cas9. Celem tych nowoczesnych technik jest zwiększenie odsetka odpowiedzi i wydłużenie czasu trwania remisji, ukierunkowanie terapii na nowe jednostki chorobowe, zmniejszenie toksyczności i stworzenie „uniwersalnych komórek CAR-T”. Potencjalne mechanizmy niepowodzenia terapii limfocytami CAR-T obejmują ucieczkę nowotworu spod nadzoru immunologicznego (np. poprzez utratę ekspresji CD19), immunosupresyjne mikrośrodowisko, wyczerpanie limfocytów CAR-T lub zmniejszenie ich aktywności. W pracy opisano również toksyczność CAR-T oraz potencjalne sposoby zapobiegania lub leczenia niebezpiecznych, czy zagrażających życiu zdarzeń niepożądanych.
Pobierz cytowanie

Słowa kluczowe

terapia CAR-T, CAR-T, immunoterapia nowotworu, chimeryczny receptor antygenowy, nowotwory hematologiczne, mikrośrodowisko nowotworu

Informacje o artykule
Tytuł

Innowacyjna terapia CAR-T w leczeniu nowotworów hematologicznych — wybrane aspekty genetyczne i immunologiczne

Czasopismo

Hematologia

Numer

Tom 11, Nr 3 (2020)

Typ artykułu

Artykuł przeglądowy

Strony

166-182

Data publikacji on-line

2020-09-28

DOI

10.5603/Hem.a2020.0025

Rekord bibliograficzny

Hematologia 2020;11(3):166-182.

Słowa kluczowe

terapia CAR-T
CAR-T
immunoterapia nowotworu
chimeryczny receptor antygenowy
nowotwory hematologiczne
mikrośrodowisko nowotworu

Autorzy

Katarzyna Karwicka
Joanna Wawer
Olga Czabak
Janusz Kocki
Marek Hus

Referencje (114)
  1. Minn Il, Rowe SP, Pomper MG. Enhancing CAR T-cell therapy through cellular imaging and radiotherapy. Lancet Oncol. 2019; 20(8): e443–e451.
  2. Ghione P, Moskowitz AJ, De Paola NEK, et al. Novel immunotherapies for T cell lymphoma and leukemia. Curr Hematol Malig Rep. 2018; 13(6): 494–506.
  3. June CH, O'Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018; 359(6382): 1361–1365.
  4. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016; 13(6): 370–383.
  5. Zhang X, Li JJ, Lu PH. Advances in the development of chimeric antigen receptor-T-cell therapy in B-cell acute lymphoblastic leukemia. Chin Med J (Engl). 2020; 133(4): 474–482.
  6. Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010; 116(20): 4099–4102.
  7. Sommermeyer D, Hill T, Shamah SM, et al. Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia. 2017; 31(10): 2191–2199.
  8. Schuster SJ, Bishop MR, Tam CS, et al. Primary analysis of Juliet: a global, pivotal, phase 2 trial of CTL019 in adult patients with relapsed or refractory diffuse large B-cell lymphoma. Blood. 2017; 130(Suppl 1): 577.
  9. Schuster SJ, Bishop M, Tam C, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019; 380(1): 45–56.
  10. Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther Adv Hematol. 2019; 10: 2040620719841581.
  11. Braendstrup P, Levine BL, Ruella M. The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy. 2020; 22(2): 57–69.
  12. Laetsch TW, Myers GD, Baruchel A, et al. Patient-reported quality of life after tisagenlecleucel infusion in children and young adults with relapsed or refractory B-cell acute lymphoblastic leukaemia: a global, single-arm, phase 2 trial. Lancet Oncol. 2019; 20(12): 1710–1718.
  13. Roex G, Feys T, Beguin Y, et al. Chimeric antigen receptor-T-cell therapy for B-cell hematological malignancies: an update of the pivotal clinical trial data. Pharmaceutics. 2020; 12(2).
  14. Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019; 20(1): 31–42.
  15. Maziarz RT, Waller EK, Jaeger U, et al. Patient-reported long-term quality of life after tisagenlecleucel in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 2020; 4(4): 629–637.
  16. Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017; 377(26): 2545–2554.
  17. Voelker R. CAR-T therapy is approved for mantle cell lymphoma. JAMA. 2020; 324(9): 832.
  18. Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-Cell lymphoma. N Engl J Med. 2020; 382(14): 1331–1342.
  19. Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016; 126(6): 2123–2138.
  20. Turtle CJ, Hay KA, Hanafi LA, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol. 2017; 35(26): 3010–3020.
  21. Cheadle EJ, Sheard V, Hombach AA, et al. Chimeric antigen receptors for T-cell based therapy. Methods Mol Biol. 2012; 907: 645–666.
  22. Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013; 5(177): 177ra38.
  23. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015; 385(9967): 517–528.
  24. Maude SL, Frey N, Shaw P, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014; 371(16): 1507–1517.
  25. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015; 15(8): 1145–1154.
  26. Lorentzen CL, Straten PT. CD19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and Acute Lymphoblastic Leukaemia. Scand J Immunol. 2015; 82(4): 307–319.
  27. Yu S, Li A, Liu Q, et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol. 2017; 10(1): 78.
  28. Zhang E, Xu H. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy. J Hematol Oncol. 2017; 10(1): 1.
  29. Almåsbak H, Walseng E, Kristian A, et al. Inclusion of an IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Ther. 2015; 22(5): 391–403.
  30. Hudecek M, Sommermeyer D, Kosasih PL, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res. 2015; 3(2): 125–135.
  31. Jonnalagadda M, Mardiros A, Urak R, et al. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. Mol Ther. 2015; 23(4): 757–768.
  32. Zou Y, Xu W, Li J. Chimeric antigen receptor-modified T cell therapy in chronic lymphocytic leukemia. J Hematol Oncol. 2018; 11(1): 130.
  33. Kojima R, Aubel D, Fussenegger M. Building sophisticated sensors of extracellular cues that enable mammalian cells to work as "doctors" in the body. Cell Mol Life Sci. 2020; 77(18): 3567–3581.
  34. Sermer D, Brentjens R. CAR T-cell therapy: full speed ahead. Hematol Oncol. 2019; 37(Suppl 1): 95–100.
  35. Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011; 365(8): 725–733.
  36. Maude SL, Barrett D, Teachey DT, et al. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014; 20(2): 119–122.
  37. Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011; 121(5): 1822–1826.
  38. Zhou X, Di Stasi A, Tey SK, et al. Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood. 2014; 123(25): 3895–3905.
  39. Di Stasi A, Tey SK, Dotti G, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011; 365(18): 1673–1683.
  40. Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010; 16(9): 1245–1256.
  41. Lamers CHJ, Sleijfer S, Vulto AG, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006; 24(13): e20–e22.
  42. Till BG, Jensen MC, Wang J, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008; 112(6): 2261–2271.
  43. Yang X, Wang GX, Zhou JF. CAR T cell therapy for hematological malignancies. Curr Med Sci. 2019; 39(6): 874–882.
  44. Song DG, Ye Q, Poussin M, et al. CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood. 2012; 119(3): 696–706.
  45. Milone MC, Fish J, Carpenito C, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009; 17(8): 1453–1464.
  46. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017; 377(26): 2531–2544.
  47. Abramson JS, Gordon L, Palomba M, et al. Updated safety and long term clinical outcomes in TRANSCEND NHL 001, pivotal trial of lisocabtagene maraleucel (JCAR017) in R/R aggressive NHL. J Clin Oncol. 2018; 36(15_Suppl): 7505–7505.
  48. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014; 124(2): 188–195.
  49. Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A. 2009; 106(9): 3360–3365.
  50. Zhong XS, Matsushita M, Plotkin J, et al. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther. 2010; 18(2): 413–420.
  51. Redeker A, Arens R. Improving adoptive T cell therapy: the particular role of T cell costimulation, cytokines, and post-transfer vaccination. Front Immunol. 2016; 7: 345.
  52. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019; 34: 45–55.
  53. Zhou X, Dotti G, Krance RA, et al. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood. 2015; 125(26): 4103–4113.
  54. Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a "safety switch" to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014; 5: 235.
  55. Pegram HJ, Lee JC, Hayman EG, et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012; 119(18): 4133–4141.
  56. Zhang L, Kerkar SP, Yu Z, et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther. 2011; 19(4): 751–759.
  57. Garrido F, Aptsiauri N, Doorduijn EM, et al. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016; 39: 44–51.
  58. Liu D, Zhao J, Song Y. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol. 2019; 12(1): 69.
  59. Bielamowicz K, Fousek K, Byrd T, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. NeuroOncol. 2017; 20(4): 506–518.
  60. Sun J, Sadelain M. The quest for spatio-temporal control of CAR T cells. Cell Res. 2015; 25(12): 1281–1282.
  61. Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013; 31(1): 71–75.
  62. Martyniszyn A, Krahl AC, André MC, et al. CD20-CD19 bispecific CAR T cells for the treatment of B-cell malignancies. Hum Gene Ther. 2017; 28(12): 1147–1157.
  63. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018; 24(1): 20–28.
  64. Yates B, Shalabi H, Salem D, et al. Sequential CD22 targeting impacts CD22 CAR-T cell response. Blood. 2018; 132(Suppl 1): 282–282.
  65. Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013; 5(215): 215ra172.
  66. Yoon DH, Osborn MJ, Tolar J, et al. Incorporation of immune checkpoint blockade into chimeric antigen receptor T cells (CAR-Ts): combination or built-In CAR-T. Int J Mol Sci. 2018; 19(2).
  67. Ren J, Liu X, Fang C, et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017; 23(9): 2255–2266.
  68. Rupp LJ, Schumann K, Roybal KT, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017; 7(1): 737.
  69. Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015; 33(6): 540–549.
  70. Qasim W, Zhan H, Samarasinghe S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017; 9(374): eaaj2013.
  71. High KA, Roncarolo M. Gene therapy. N Engl J Med. 2019; 381(5): 455–464.
  72. Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech. 2015; 8(4): 337–350.
  73. Bonini C, Brenner MK, Heslop HE, et al. Genetic modification of T cells. Biol Blood Marrow Transplant. 2011; 17(1 Suppl): S15–S20.
  74. Hoyos V, Savoldo B, Dotti G. Genetic modification of human T lymphocytes for the treatment of hematologic malignancies. Haematologica. 2012; 97(11): 1622–1631.
  75. Khalil DN, Smith EL, Brentjens RJ, et al. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016; 13(6): 394.
  76. Rossig C, Brenner MK. Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther. 2004; 10(1): 5–18.
  77. Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003; 3(1): 35–45.
  78. Geiger TL, Jyothi MD. Development and application of receptor-modified T lymphocytes for adoptive immunotherapy. Transfus Med Rev. 2001; 15(1): 21–34.
  79. Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev. 2015; 263(1): 68–89.
  80. Dodo K, Chono H, Saito N, et al. An efficient large-scale retroviral transduction method involving preloading the vector into a RetroNectin-coated bag with low-temperature shaking. PLoS One. 2014; 9(1): e86275.
  81. Casati A, Varghaei-Nahvi A, Feldman SA, et al. Clinical-scale selection and viral transduction of human naïve and central memory CD8+ T cells for adoptive cell therapy of cancer patients. Cancer Immunol Immunother. 2013; 62(10): 1563–1573.
  82. Zhao Y, Moon E, Carpenito C, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 2010; 70(22): 9053–9061.
  83. Bunnell BA, Muul LM, Donahue RE, et al. High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes. Proc Natl Acad Sci U S A. 1995; 92(17): 7739–7743.
  84. Bear AS, Morgan RA, Cornetta K, et al. Replication-competent retroviruses in gene-modified T cells used in clinical trials: is it time to revise the testing requirements? Mol Ther. 2012; 20(2): 246–249.
  85. Singh H, Manuri PR, Olivares S, et al. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res. 2008; 68(8): 2961–2971.
  86. Nakazawa Y, Huye LE, Dotti G, et al. Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes. J Immunother. 2009; 32(8): 826–836.
  87. Deeks SG, Wagner B, Anton PA, et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther. 2002; 5(6): 788–797.
  88. Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006; 12(20 Pt 1): 6106–6115.
  89. Finney HM, Akbar AN, Lawson ADG. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004; 172(1): 104–113.
  90. Imai C, Mihara K, Andreansky M, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004; 18(4): 676–684.
  91. Dazzi F, Szydlo RM, Goldman JM. Donor lymphocyte infusions for relapse of chronic myeloid leukemia after allogeneic stem cell transplant: where we now stand. Exp Hematol. 1999; 27(10): 1477–1486.
  92. Mandigers CM, Verdonck LF, Meijerink JPP, et al. Graft-versus-lymphoma effect of donor lymphocyte infusion in indolent lymphomas relapsed after allogeneic stem cell transplantation. Bone Marrow Transplant. 2003; 32(12): 1159–1163.
  93. Frey NV, Porter DL. Graft-versus-host disease after donor leukocyte infusions: presentation and management. Best Pract Res Clin Haematol. 2008; 21(2): 205–222.
  94. YESCARTA® [ulotka informacyjna]. Santa Monica, CA: Kite Pharma, Inc; 2019 [zaktualizowano 05.2020]. https://www.fda.gov/media/108377/download (September 12, 2020).
  95. KYMRIAH® [ulotka informacyjna]. East Hanover, New Jersey: Novartis Pharmaceuticals Corporation; 2017 [zaktualizowano 05.2018]. https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Package-Insert---KYMRIAH.pdf. (September 12, 2020).
  96. TECARTUS® [ulotka informacyjna]. Santa Monica, CA: Kite Pharma, Inc; 2020. https://www fda gov/media/140409/download (September 12, 2020).
  97. Barrett DM, Teachey DT, Grupp SA. Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr. 2014; 26(1): 43–49.
  98. Wang Y, Zhang Wy, Han Qw, et al. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin Immunol. 2014; 155(2): 160–175.
  99. Oved JH, Barrett DM, Teachey DT. Cellular therapy: Immune-related complications. Immunol Rev. 2019; 290(1): 114–126.
  100. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011; 3(95): 95ra73.
  101. Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014; 6(224): 224ra25.
  102. DeFrancesco L. CAR-T cell therapy seeks strategies to harness cytokine storm. Nat Biotechnol. 2014; 32(7): 604.
  103. Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017; 7(12): 1404–1419.
  104. Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018; 378(5): 449–459.
  105. Chen H, Wang F, Zhang P, et al. Management of cytokine release syndrome related to CAR-T cell therapy. Front Med. 2019; 13(5): 610–617.
  106. Romero-Bermejo FJ, Ruiz-Bailen M, Gil-Cebrian J, et al. Sepsis-induced cardiomyopathy. Curr Cardiol Rev. 2011; 7(3): 163–183.
  107. Singh K, Carson K, Shah R, et al. Meta-analysis of clinical correlates of acute mortality in takotsubo cardiomyopathy. Am J Cardiol. 2014; 113(8): 1420–1428.
  108. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018; 6(1): 56.
  109. Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016; 128(13): 1688–1700.
  110. Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017; 25(1): 285–295.
  111. Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018; 36(22): 2267–2280.
  112. Venkiteshwaran A. Tocilizumab. MAbs. 2009; 1(5): 432–438.
  113. Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol. 2018; 15(1): 47–62.
  114. Nellan A, McCully CM, Cruz Garcia R, et al. Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood. 2018; 132(6): 662–666.

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl