dostęp otwarty
Leki wpływające na mechanizmy epigenetyczne w ostrej białaczce szpikowej
dostęp otwarty
Streszczenie
Lekami epigenetycznymi wykorzystywanymi obecnie w leczeniu chorych na ostrą białaczkę szpikową (AML) są inhibitory metylotransferaz DNA — azacytydyna i decytabina. Mechanizm działania obu związków polega na obniżeniu poziomu metylacji (hipometylacji) DNA i w konsekwencji przywróceniu ekspresji genów supresorowych nowotworzenia. Azacytydyna i decytabina pozwoliły na wydłużenie okresu przeżycia u pacjentów w starszym wieku niekwalifikujących się do intensywnej chemioterapii. Prowadzone są badania nad zastosowaniem obu terapeutyków w profilaktyce i w leczeniu wznowy AML po przeszczepieniu allogenicznych krwiotwórczych komórek macierzystych. W artykule przedstawiono mechanizm działania leków hipometylujących oraz dokonano przeglądu badań klinicznych z zastosowaniem azacytydyny i decytabiny u chorych na AML. Omówiono także nowe leki epigenetyczne pozostające obecnie w fazie badań klinicznych.
Streszczenie
Lekami epigenetycznymi wykorzystywanymi obecnie w leczeniu chorych na ostrą białaczkę szpikową (AML) są inhibitory metylotransferaz DNA — azacytydyna i decytabina. Mechanizm działania obu związków polega na obniżeniu poziomu metylacji (hipometylacji) DNA i w konsekwencji przywróceniu ekspresji genów supresorowych nowotworzenia. Azacytydyna i decytabina pozwoliły na wydłużenie okresu przeżycia u pacjentów w starszym wieku niekwalifikujących się do intensywnej chemioterapii. Prowadzone są badania nad zastosowaniem obu terapeutyków w profilaktyce i w leczeniu wznowy AML po przeszczepieniu allogenicznych krwiotwórczych komórek macierzystych. W artykule przedstawiono mechanizm działania leków hipometylujących oraz dokonano przeglądu badań klinicznych z zastosowaniem azacytydyny i decytabiny u chorych na AML. Omówiono także nowe leki epigenetyczne pozostające obecnie w fazie badań klinicznych.
Słowa kluczowe
ostra białaczka szpikowa, metylacja DNA, leki hipometylujące, azacytydyna, decytabina


Tytuł
Leki wpływające na mechanizmy epigenetyczne w ostrej białaczce szpikowej
Czasopismo
Numer
Typ artykułu
Artykuł przeglądowy
Strony
110-122
Data publikacji on-line
2018-08-17
DOI
10.5603/Hem.2018.0014
Rekord bibliograficzny
Hematologia 2018;9(2):110-122.
Słowa kluczowe
ostra białaczka szpikowa
metylacja DNA
leki hipometylujące
azacytydyna
decytabina
Autorzy
Kamil Wiśniewski
Joanna Góra-Tybor


- Oran B, Weisdorf DJ. Survival for older patients with acute myeloid leukemia: a population-based study. Haematologica. 2012; 97(12): 1916–1924.
- Burnett A, Wetzler M, Löwenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011; 29(5): 487–494.
- Klepin HD. Elderly acute myeloid leukemia: assessing risk. Curr Hematol Malig Rep. 2015; 10(2): 118–125.
- Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007; 128(4): 683–692.
- Esteller M. Epigenetics in cancer. N Engl J Med. 2008; 358(11): 1148–1159.
- Pleyer L, Burgstaller S, Girschikofsky M, et al. Azacitidine in 302 patients with WHO-defined acute myeloid leukemia: results from the Austrian Azacitidine Registry of the AGMT-Study Group. Ann Hematol. 2014; 93(11): 1825–1838.
- Bhatnagar B, Duong VuH, Gourdin TS, et al. Ten-day decitabine as initial therapy for newly diagnosed patients with acute myeloid leukemia unfit for intensive chemotherapy. Leuk Lymphoma. 2014; 55(7): 1533–1537.
- Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014; 13(9): 673–691.
- Nebbioso A, Clarke N, Voltz E, et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med. 2005; 11(1): 77–84.
- Nassereddine S, Lap CJ, Haroun F, et al. The role of mutant IDH1 and IDH2 inhibitors in the treatment of acute myeloid leukemia. Ann Hematol. 2017; 96(12): 1983–1991.
- Rius M, Stresemann C, Keller D, et al. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Mol Cancer Ther. 2009; 8(1): 225–231.
- Damaraju VL, Mowles D, Yao S, et al. Role of human nucleoside transporters in the uptake and cytotoxicity of azacitidine and decitabine. Nucleosides Nucleotides Nucleic Acids. 2012; 31(3): 236–255.
- Qin T, Jelinek J, Si J, et al. Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. Blood. 2009; 113(3): 659–667.
- Li LH, Olin EJ, Buskirk HH, et al. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 1970; 30(11): 2760–2769.
- Van Rompay AR, Norda A, Lindén K, et al. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. Mol Pharmacol. 2001; 59(5): 1181–1186.
- Momparler RL, Derse D. Kinetics of phosphorylation of 5-aza-2'-deoxyycytidine by deoxycytidine kinase. Biochem Pharmacol. 1979; 28(8): 1443–1444.
- Qin T, Castoro R, El Ahdab S, et al. Mechanisms of resistance to decitabine in the myelodysplastic syndrome. PLoS One. 2011; 6(8): e23372.
- Galmarini CM, Thomas X, Graham K, et al. Deoxycytidine kinase and cN-II nucleotidase expression in blast cells predict survival in acute myeloid leukaemia patients treated with cytarabine. Br J Haematol. 2003; 122(1): 53–60.
- Eliopoulos N, Cournoyer D, Momparler RL. Drug resistance to 5-aza-2'-deoxycytidine, 2',2'-difluorodeoxycytidine, and cytosine arabinoside conferred by retroviral-mediated transfer of human cytidine deaminase cDNA into murine cells. Cancer Chemother Pharmacol. 1998; 42(5): 373–378.
- Mahfouz RZ, Jankowska A, Ebrahem Q, et al. Increased CDA expression/activity in males contributes to decreased cytidine analog half-life and likely contributes to worse outcomes with 5-azacytidine or decitabine therapy. Clin Cancer Res. 2013; 19(4): 938–948.
- Karahoca M, Momparler RL. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics. 2013; 5(1): 3.
- Savona MR, Odenike O, Amrein PC, et al. Results of first in human (FIH) phase 1 pharmacokinetic (PK) guided dose-escalation study of ASTX727, a combination of the oral cytidine deaminase inhibitor (CDAi) E7727 with oral decitabine in subjects with myelodysplastic syndromes (MDS). Blood. 2015; 126: abstract.
- Tsai CT, Yang PM, Chern TR, et al. AID downregulation is a novel function of the DNMT inhibitor 5-aza-deoxycytidine. Oncotarget. 2014; 5(1): 211–223.
- Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA. 1984; 81(22): 6993–6997.
- Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002; 21(35): 5483–5495.
- Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008; 123(1): 8–13.
- Ghoshal K, Datta J, Majumder S, et al. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol. 2005; 25(11): 4727–4741.
- Aimiuwu J, Wang H, Chen P, et al. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood. 2012; 119(22): 5229–5238.
- Derissen EJB, Hillebrand MJX, Rosing H, et al. Quantitative determination of azacitidine triphosphate in peripheral blood mononuclear cells using liquid chromatography coupled with high-resolution mass spectrometry. J Pharm Biomed Anal. 2014; 90: 7–14.
- Jansen RS, Rosing H, Wijermans PW, et al. Decitabine triphosphate levels in peripheral blood mononuclear cells from patients receiving prolonged low-dose decitabine administration: a pilot study. Cancer Chemother Pharmacol. 2012; 69(6): 1457–1466.
- Liu Z, Marcucci G, Byrd JC, et al. Characterization of decomposition products and preclinical and low dose clinical pharmacokinetics of decitabine (5-aza-2'-deoxycytidine) by a new liquid chromatography/tandem mass spectrometry quantification method. Rapid Commun Mass Spectrom. 2006; 20(7): 1117–1126.
- Hollenbach PW, Nguyen AN, Brady H, et al. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One. 2010; 5(2): e9001.
- Santini V. Azacitidine: activity and efficacy as an epigenetic treatment of myelodysplastic syndromes. Expert Rev Hematol. 2009; 2(2): 121–127.
- Choi SiHo, Byun HM, Kwan JM, et al. Hydroxycarbamide in combination with azacitidine or decitabine is antagonistic on DNA methylation inhibition. Br J Haematol. 2007; 138(5): 616–623.
- Christman JK, Mendelsohn N, Herzog D, et al. Effect of 5-azacytidine on differentiation and DNA methylation in human promyelocytic leukemia cells (HL-60). Cancer Res. 1983; 43(2): 763–769.
- Mund C, Hackanson B, Stresemann C, et al. Characterization of DNA demethylation effects induced by 5-aza-2'-deoxycytidine in patients with myelodysplastic syndrome. Cancer Res. 2005; 65(16): 7086–7090.
- Wong YF, Jakt LM, Nishikawa SI. Prolonged treatment with DNMT inhibitors induces distinct effects in promoters and gene-bodies. PLoS One. 2013; 8(8): e71099.
- Shen L, Kantarjian H, Guo Yi, et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol. 2010; 28(4): 605–613.
- Yang AS, Doshi KD, Choi SW, et al. DNA methylation changes after 5-aza-2'-deoxycytidine therapy in patients with leukemia. Cancer Res. 2006; 66(10): 5495–5503.
- Fandy TE, Herman JG, Kerns P, et al. Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood. 2009; 114(13): 2764–2773.
- Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2'-deoxycytidine (decitabine) treatment. Blood. 2002; 100(8): 2957–2964.
- Maegawa S, Gough SM, Watanabe-Okochi N, et al. Age-related epigenetic drift in the pathogenesis of MDS and AML. Genome Res. 2014; 24(4): 580–591.
- Zhu ZZ, Hou L, Bollati V, et al. Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol. 2012; 41(1): 126–139.
- Saiki JH, McCredie KB, Vietti TJ, et al. 5-azacytidine in acute leukemia. Cancer. 1978; 42(5): 2111–2114.
- Karon M, Sieger L, Leimbrock S, et al. 5-Azacytidine: a new active agent for the treatment of acute leukemia. Blood. 1973; 42(3): 359–365.
- Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002; 20(10): 2429–2440.
- Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. International Vidaza High-Risk MDS Survival Study Group. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009; 10(3): 223–232.
- Arber DA, Brunning RD, Brunning A. et al. Acute myeloid leukaemaia with myelodysplastic-related changes. In: Swerdlow SH, Campo E, Harris NL. et al. ed. WHO classifi cation of tumors of haematopoietic and lympohoid tissues. 4th edn. International Agency for Research on Cancer, Lyon 2008.
- Silverman LR, McKenzie DR, Peterson BL, et al. Cancer and Leukemia Group B. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol. 2006; 24(24): 3895–3903.
- Fenaux P, Mufti GJ, Hellström-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010; 28(4): 562–569.
- Silverman LR, Fenaux P, Mufti GJ, et al. The effects of continued azacitidine (AZA) treatment cycles on response in higher-risk patients (Pts) with myelodysplastic syndromes (MDS). Blood. 2008; 112: 227.
- Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015; 126(3): 291–299.
- Gore SD, Fenaux P, Santini V, et al. A multivariate analysis of the relationship between response and survival among patients with higher-risk myelodysplastic syndromes treated within azacitidine or conventional care regimens in the randomized AZA-001 trial. Haematologica. 2013; 98(7): 1067–1072.
- Cabrero M, Jabbour E, Ravandi F, et al. Discontinuation of hypomethylating agent therapy in patients with myelodysplastic syndromes or acute myelogenous leukemia in complete remission or partial response: retrospective analysis of survival after long-term follow-up. Leuk Res. 2015; 39(5): 520–524.
- Kantarjian H, O'Brien S, Cortes J, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome:. Cancer. 2006; 106(5): 1090–1098.
- Cashen AF, Schiller GJ, O'Donnell MR, et al. Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol. 2010; 28(4): 556–561.
- Blum W, Garzon R, Klisovic RB, et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA. 2010; 107(16): 7473–7478.
- Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012; 30(21): 2670–2677.
- Sureda A, Bader P, Cesaro S, et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant. 2015; 50(8): 1037–1056.
- Bejanyan N, Weisdorf DJ, Logan BR, et al. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research study. Biol Blood Marrow Transplant. 2015; 21(3): 454–459.
- Ruutu T, de Wreede LC, van Biezen A, et al. European Society for Blood and Marrow Transplantation (EBMT). Second allogeneic transplantation for relapse of malignant disease: retrospective analysis of outcome and predictive factors by the EBMT. Bone Marrow Transplant. 2015; 50(12): 1542–1550.
- Bolaños-Meade J, Smith BD, Gore SD, et al. 5-azacytidine as salvage treatment in relapsed myeloid tumors after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant. 2011; 17(5): 754–758.
- Goodyear OC, Dennis M, Jilani NY, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood. 2012; 119(14): 3361–3369.
- Choi J, Ritchey J, Prior JL, et al. In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood. 2010; 116(1): 129–139.
- Santourlidis S, Trompeter HI, Weinhold S, et al. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol. 2002; 169(8): 4253–4261.
- Craddock C, Labopin M, Robin M, et al. Clinical activity of azacitidine in patients who relapse after allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica. 2016; 101(7): 879–883.
- Schroeder T, Rautenberg C, Haas R, et al. Hypomethylating agents after allogeneic blood stem cell transplantation. Stem Cell Investig. 2016; 3(2): 84–150.
- Steinmann J, Bertz H, Wäsch R, et al. 5-Azacytidine and DLI can induce long-term remissions in AML patients relapsed after allograft. Bone Marrow Transplant. 2015; 50(5): 690–695.
- Tessoulin B, Delaunay J, Chevallier P, et al. Azacitidine salvage therapy for relapse of myeloid malignancies following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2014; 49(4): 567–571.
- Schroeder T, Rachlis E, Bug G, et al. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013; 27(6): 1229–1235.
- Lübbert M, Bertz H, Wäsch R, et al. Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting. Bone Marrow Transplant. 2010; 45(4): 627–632.
- Schroeder T, Czibere A, Platzbecker U, et al. 5-Azacytidine for the treatment of patients with acute myeloid leukemia or myelodysplastic syndrome who relapse after allo-SCT: a retrospective analysis. Bone Marrow Transplant. 2010; 45(5): 872–876.
- Ganguly S, Amin M, Divine C, et al. Decitabine in patients with relapsed acute myeloid leukemia (AML) after allogeneic stem cell transplantation (allo-SCT). Ann Hematol. 2013; 92(4): 549–550.
- Singh SN, Cao Q, Gojo I, et al. Durable complete remission after single agent decitabine in AML relapsing in extramedullary sites after allo-SCT. Bone Marrow Transplant. 2012; 47(7): 1008–1009.
- El-Cheikh J, Massoud R, Fares E, et al. Low-dose 5-azacytidine as preventive therapy for relapse of AML and MDS following allogeneic HCT. Bone Marrow Transplant. 2017; 52(6): 918–921.
- de Lima M, Giralt S, Thall PF, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010; 116(23): 5420–5431.
- Craddock C, Jilani N, Siddique S, et al. Tolerability and clinical activity of post-transplantation azacitidine in patients allografted for acute myeloid leukemia treated on the RICAZA Trial. Biol Blood Marrow Transplant. 2016; 22(2): 385–390.
- Pusic I, Choi J, Fiala MA, et al. Maintenance therapy with decitabine after allogeneic stem cell transplantation for acute myelogenous leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2015; 21(10): 1761–1769.
- Oshikawa G, Kakihana K, Saito M, et al. Post-transplant maintenance therapy with azacitidine and gemtuzumab ozogamicin for high-risk acute myeloid leukaemia. Br J Haematol. 2015; 169(5): 756–759.
- Griffiths EA, Choy G, Redkar S, et al. SGI-110: DNA methyltransferase inhibitor oncolytic. Drugs Fut. 2013; 38(8): 535–543.
- Yoo CB, Jeong S, Egger G, et al. Delivery of 5-aza-2'-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res. 2007; 67(13): 6400–6408.
- Kantarjian HM, Roboz GJ, Kropf PL, et al. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol. 2017; 18(10): 1317–1326.
- Roboz G, Kantarjian H, Yee K, et al. Dose, schedule, safety, and efficacy of guadecitabine in relapsed or refractory acute myeloid leukemia. Cancer. 2017; 124(2): 325–334.
- Schneider-Stock R, Ocker M. Epigenetic therapy in cancer: molecular background and clinical development of histone deacetylase and DNA methyltransferase inhibitors. IDrugs. 2007; 10(8): 557–561.
- Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007; 5(10): 981–989.
- Witt O, Deubzer HE, Milde T, et al. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009; 277(1): 8–21.
- Christiansen AJ, West A, Banks KM, et al. Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc Natl Acad Sci USA. 2011; 108(10): 4141–4146.
- Noureen N, Rashid H, Kalsoom S. Identification of type-specific anticancer histone deacetylase inhibitors: road to success. Cancer Chemother Pharmacol. 2010; 66(4): 625–633.
- Scott GK, Mattie MD, Berger CE, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006; 66(3): 1277–1281.
- Bose P, Grant S. Rational combinations of targeted agents in AML. J Clin Med. 2015; 4(4): 634–664.
- Shao W, Growney JD, Feng Y et al. Potent anticancer activity of the pan-deacetylase inhibitor panobinostat (LBH589) as a single agent in in vitro and in vivo tumor models. In: 99th American Association of Cancer Research.
- Wahaib K, Beggs AE, Campbell H, et al. Panobinostat: A histone deacetylase inhibitor for the treatment of relapsed or refractory multiple myeloma. Am J Health Syst Pharm. 2016; 73(7): 441–450.
- Giles F, Fischer T, Cortes J, et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res. 2006; 12(15): 4628–4635.
- DeAngelo DJ, Spencer A, Bhalla KN, et al. Phase Ia/II, two-arm, open-label, dose-escalation study of oral panobinostat administered via two dosing schedules in patients with advanced hematologic malignancies. Leukemia. 2013; 27(8): 1628–1636.
- Tan P, Wei A, Mithraprabhu S, et al. Dual epigenetic targeting with panobinostat and azacitidine in acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood Cancer J. 2014; 4: e170.
- Ocio EM, Herrera P, Olave MT, et al. PETHEMA Group. Panobinostat as part of induction and maintenance for elderly patients with newly diagnosed acute myeloid leukemia: phase Ib/II panobidara study. Haematologica. 2015; 100(10): 1294–1300.
- Byrd JC, Marcucci G, Parthun MR, et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood. 2005; 105(3): 959–967.
- Klimek VM, Fircanis S, Maslak P, et al. Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res. 2008; 14(3): 826–832.
- Gojo I, Jiemjit A, Trepel JB, et al. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood. 2007; 109(7): 2781–2790.
- Quintás-Cardama A, Santos FPS, Garcia-Manero G. Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Leukemia. 2011; 25(2): 226–235.
- Ley TJ, Miller C, Ding Li, et al. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368(22): 2059–2074.
- Patel JP, Gönen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012; 366(12): 1079–1089.
- Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010; 28(14): 2348–2355.
- Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012; 483(7390): 474–478.
- Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010; 207(2): 339–344.
- Reitman ZJ, Parsons DW, Yan H. IDH1 and IDH2: not your typical oncogenes. Cancer Cell. 2010; 17(3): 215–216.
- Fathi AT, DiNardo CD, Kline I, et al. AG221-C-001 Study Investigators. Enasidenib in mutant relapsed or refractory acute myeloid leukemia. Blood. 2017; 130(6): 722–731.
- DiNardo CD, de Bo, Stein EM, et al. Ivosidenib (AG-120) in mutant IDH1 AML and advanced hematologic malignancies: results of a phase 1 dose escalation and expansion study. Blood. 2017; 130: 725.