open access

Vol 93, No 9 (2022)
Research paper
Published online: 2021-11-05
Get Citation

Twin anaemia polycythaemia sequence: a complicated target for prenatal diagnosis, a current state of knowledge

Martin Alfoldi1, Ivana Kunochová1, Martin Gábor1, Vladimír Ferianec1
·
Pubmed: 35072241
·
Ginekol Pol 2022;93(9):742-749.
Affiliations
  1. Medical Facutly of Comenius Medical Facutly of Comenius University, Bratislava, Slovakia, Slovakia

open access

Vol 93, No 9 (2022)
ORIGINAL PAPERS Obstetrics
Published online: 2021-11-05

Abstract

Objectives: Processing of available information on TAPS with a focus on the evaluation of the most sensitive and most specific prenatal diagnostic test. Material and methods: Retrospective analysis of available publications on TAPS with their meta-analytical processing through available electronic medical databases. Evaluation of the most sensitive and specific prenatal diagnostic test with graphical processing of sensitivity and specificity values ​​depending on the TAPS diagnostic criteria used. Results: In total, we found 165 available articles, the oldest from 2007 and the most recent from 2020. Based on the available articles, we evaluated the determination of MCA-PSV with a sensitivity of 83% and a specificity of up to 100% for the currently generally accepted diagnostic criterion TAPS — Delta MCA-PSV > 0.5MoM as the most sensitive and specific method of prenatal diagnosis. Conclusions: The serial determination of MCA-PSV represents the most sensitive and specific prenatal diagnostic test to date (2020) based on available knowledge. Serial measurement of the MCA-PSV since gestational week 20 every two weeks until delivery represents a potential TAPS screening test for all monochorionic pregnancies. The late, or postnatal diagnosis of TAPS can have serious consequences in the form of intrauterine death of the foetus(es) and increased perinatal mortality and morbidity.

Abstract

Objectives: Processing of available information on TAPS with a focus on the evaluation of the most sensitive and most specific prenatal diagnostic test. Material and methods: Retrospective analysis of available publications on TAPS with their meta-analytical processing through available electronic medical databases. Evaluation of the most sensitive and specific prenatal diagnostic test with graphical processing of sensitivity and specificity values ​​depending on the TAPS diagnostic criteria used. Results: In total, we found 165 available articles, the oldest from 2007 and the most recent from 2020. Based on the available articles, we evaluated the determination of MCA-PSV with a sensitivity of 83% and a specificity of up to 100% for the currently generally accepted diagnostic criterion TAPS — Delta MCA-PSV > 0.5MoM as the most sensitive and specific method of prenatal diagnosis. Conclusions: The serial determination of MCA-PSV represents the most sensitive and specific prenatal diagnostic test to date (2020) based on available knowledge. Serial measurement of the MCA-PSV since gestational week 20 every two weeks until delivery represents a potential TAPS screening test for all monochorionic pregnancies. The late, or postnatal diagnosis of TAPS can have serious consequences in the form of intrauterine death of the foetus(es) and increased perinatal mortality and morbidity.

Get Citation

Keywords

TTTS (Twin-twin Transfusion Syndrome); TAPS (Twin Anaemia Polycythaemia Sequence); MCA-PSV (Middle Cerebral Artery Peak Systolic Velocity); sensitivity; specificity

About this article
Title

Twin anaemia polycythaemia sequence: a complicated target for prenatal diagnosis, a current state of knowledge

Journal

Ginekologia Polska

Issue

Vol 93, No 9 (2022)

Article type

Research paper

Pages

742-749

Published online

2021-11-05

Page views

4553

Article views/downloads

608

DOI

10.5603/GP.a2021.0178

Pubmed

35072241

Bibliographic record

Ginekol Pol 2022;93(9):742-749.

Keywords

TTTS (Twin-twin Transfusion Syndrome)
TAPS (Twin Anaemia Polycythaemia Sequence)
MCA-PSV (Middle Cerebral Artery Peak Systolic Velocity)
sensitivity
specificity

Authors

Martin Alfoldi
Ivana Kunochová
Martin Gábor
Vladimír Ferianec

References (59)
  1. Hack KEA, Nikkels PGJ, Koopman-Esseboom C, et al. Placental characteristics of monochorionic diamniotic twin pregnancies in relation to perinatal outcome. Placenta. 2008; 29(11): 976–981.
  2. Slaghekke F, Kist WJ, Oepkes D, et al. TAPS and TOPS: two distinct forms of feto-fetal transfusion in monochorionic twins. Z Geburtshilfe Neonatol. 2009; 213(6): 248–254.
  3. Shanahan MA, Bebbington MW. Placental anatomy and function in twin gestations. Obstet Gynecol Clin North Am. 2020; 47(1): 99–116.
  4. Zhao DP, de Villiers SF, Slaghekke F, et al. Prevalence, size, number and localization of vascular anastomoses in monochorionic placentas. Placenta. 2013; 34(7): 589–593.
  5. Lopriore E, Slaghekke F, Middeldorp JM, et al. Accurate and simple evaluation of vascular anastomoses in monochorionic placenta using colored dye. J Vis Exp. 2011(55): e3208.
  6. Lewi L, Cannie M, Blickstein I, et al. Placental sharing, birthweight discordance, and vascular anastomoses in monochorionic diamniotic twin placentas. Am J Obstet Gynecol. 2007; 197(6): 587.e1–587.e8.
  7. Lopriore E, Middeldorp JM, Oepkes D, et al. Twin anemia-polycythemia sequence in two monochorionic twin pairs without oligo-polyhydramnios sequence. Placenta. 2007; 28(1): 47–51.
  8. Simpson LL. Society for Maternal-Fetal Medicine. Twin-twin transfusion syndrome. Am J Obstet Gynecol. 2013; 208(1): 3–18.
  9. Mackie FL, Hall MJ, Morris RK, et al. Early prognostic factors of outcomes in monochorionic twin pregnancy: systematic review and meta-analysis. Am J Obstet Gynecol. 2018; 219(5): 436–446.
  10. Stagnati V, Zanardini C, Fichera A, et al. Early prediction of twin-to-twin transfusion syndrome: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017; 49(5): 573–582.
  11. Sueters M, Middeldorp JM, Lopriore E, et al. Timely diagnosis of twin-to-twin transfusion syndrome in monochorionic twin pregnancies by biweekly sonography combined with patient instruction to report onset of symptoms. Ultrasound Obstet Gynecol. 2006; 28(5): 659–664.
  12. Wohlmuth C, Boudreaux D, Moise KJ, et al. Cardiac pathophysiology in twin-twin transfusion syndrome: new insights into its evolution. Ultrasound Obstet Gynecol. 2018; 51(3): 341–348.
  13. Moaddab A, Nassr AA, Espinoza J, et al. Twin anemia polycythemia sequence: a single center experience and literature review. Eur J Obstet Gynecol Reprod Biol. 2016; 205: 158–164.
  14. Tollenaar LSA, Slaghekke F, van Klink JMM, et al. Twin-twin transfusion syndrome with anemia-polycythemia: prevalence, characteristics, and outcome. J Clin Med. 2019; 8(8).
  15. Lopriore E, Deprest J, Slaghekke F, et al. Placental characteristics in monochorionic twins with and without twin anemia-polycythemia sequence. Obstet Gynecol. 2008; 112(4): 753–758.
  16. Bae JY, Oh JJu, Hong SY. Prenatal diagnosis of spontaneous twin anemia-polycythemia sequence and postnatal examination of placental vascular anastomoses. Obstet Gynecol Sci. 2016; 59(6): 539–543.
  17. Zhao D, Villiers Sde, Oepkes D, et al. Monochorionic twin placentas: Injection technique and analysis. Diagnóstico Prenatal. 2014; 25(2): 35–42.
  18. Couck I, Lewi L. The placenta in Twin-to-Twin Transfusion Syndrome and Twin Anemia Polycythemia Sequence. Twin Res Hum Genet. 2016; 19(3): 184–190.
  19. Gillan J, Malley A, Cooley S, et al. 707: Arteriovenous shunts (AVS) occur in the placenta: unexpected evidence from histological examination. American Journal of Obstetrics and Gynecology. 2014; 210(1): S347–S348.
  20. Diehl W, Hecher K, Zikulnig L, et al. Placental vascular anastomoses visualized during fetoscopic laser surgery in severe mid-trimester twin-twin transfusion syndrome. Placenta. 2001; 22(10): 876–881.
  21. Slaghekke F, Lewi L, Middeldorp JM, et al. Residual anastomoses in twin-twin transfusion syndrome after laser: the Solomon randomized trial. Am J Obstet Gynecol. 2014; 211(3): 285.e1–285.e7.
  22. Favre R, Koch A, Weingertner AS, et al. Vascular pattern in monochorionic placentas with spontaneous TAPS and TTTS with residual anastomoses after laser: a case-control study. Prenat Diagn. 2013; 33(10): 979–982.
  23. Robyr R, Lewi L, Salomon LJ, et al. Prevalence and management of late fetal complications following successful selective laser coagulation of chorionic plate anastomoses in twin-to-twin transfusion syndrome. Am J Obstet Gynecol. 2006; 194(3): 796–803.
  24. Weingertner AS, Kohler A, Kohler M, et al. Clinical and placental characteristics in four new cases of twin anemia-polycythemia sequence. Ultrasound Obstet Gynecol. 2010; 35(4): 490–494.
  25. Kirbas A, Celen S, Caglar T, et al. Antenatal management of twin anemia-polycythemia sequence. Medicine Science | International Medical Journal. 2018; 7(3): 709–712.
  26. Jopling J, Henry E, Wiedmeier SE, et al. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics. 2009; 123(2): e333–e337.
  27. Slaghekke F, Kist WJ, Oepkes D, et al. Twin anemia-polycythemia sequence: diagnostic criteria, classification, perinatal management and outcome. Fetal Diagn Ther. 2010; 27(4): 181–190.
  28. Tollenaar LSA, Slaghekke F, Middeldorp JM, et al. Twin Anemia Polycythemia Sequence: current views on pathogenesis, diagnostic criteria, perinatal management, and outcome. Twin Res Hum Genet. 2016; 19(3): 222–233.
  29. Liu B, Kalafat E, Bhide A, et al. Performance of antenatal diagnostic criteria of Twin-Anemia-Polycythemia Sequence. J Clin Med. 2020; 9(9).
  30. Visser GL, Tollenaar LSA, Bekker V, et al. Leukocyte counts and other hematological values in Twin-Twin Transfusion Syndrome and Twin Anemia-Polycythemia Sequence. Fetal Diagn Ther. 2020; 47(2): 123–128.
  31. Verbeek L, Slaghekke F, Sueters M, et al. Hematological disorders at birth in complicated monochorionic twins. Expert Rev Hematol. 2017; 10(6): 525–532.
  32. Fitzgerald B. Histopathological examination of the placenta in twin pregnancies. APMIS. 2018; 126(7): 626–637.
  33. Emery SP, Nguyen L, Parks WT. Histological appearance of placental solomonization in the treatment of Twin-Twin Transfusion Syndrome. AJP Rep. 2016; 6(2): e165–e169.
  34. Zhao D, Tollenaar LSA, Slaghekke F, et al. Evaluation of color difference in placenta with Twin Anemia Polycythemia Sequence. J Vis Exp. 2020(160).
  35. Fishel-Bartal M, Weisz B, Mazaki-Tovi S, et al. Can middle cerebral artery peak systolic velocity predict polycythemia in monochorionic-diamniotic twins? Evidence from a prospective cohort study. Ultrasound Obstet Gynecol. 2016; 48(4): 470–475.
  36. Gucciardo L, Lewi L, Vaast P, et al. Twin anemia polycythemia sequence from a prenatal perspective. Prenat Diagn. 2010; 30(5): 438–442.
  37. Kusanovic J, Romero R, Gotsch F, et al. Discordant placental echogenicity: a novel sign of impaired placental perfusion in twin-twin transfusion syndrome? J Matern Fetal Neonatal Med . 2009; 23(1): 013–6.
  38. Soundararajan LP, Howe DT. Starry sky liver in twin anemia-polycythemia sequence. Ultrasound Obstet Gynecol. 2014; 43(5): 597–599.
  39. Brock CO, Bergh EP, Moise KJ, et al. Middle cerebral artery Doppler velocimetry for the diagnosis of Twin Anemia Polycythemia Sequence: a systematic review. J Clin Med. 2020; 9(6).
  40. Tavares de Sousa M, Fonseca A, Hecher K. Role of fetal intertwin difference in middle cerebral artery peak systolic velocity in predicting neonatal twin anemia-polycythemia sequence. Ultrasound Obstet Gynecol. 2019; 53(6): 794–797.
  41. Khalil A, Gordijn S, Ganzevoort W, et al. Consensus diagnostic criteria and monitoring of twin anemia-polycythemia sequence: Delphi procedure. Ultrasound Obstet Gynecol. 2020; 56(3): 388–394.
  42. Hill KM, Masoudian P, Fung-Kee-Fung K, et al. Intrauterine interventions for the treatment of Twin Anemia-Polycythemia Sequence: a systematic review. J Obstet Gynaecol Can. 2019; 41(7): 981–991.
  43. Yarci E, Alyamac Dizdar E, Oncel MY, et al. Successful management of twin anemia/polycythemia sequence by syngeneic partial exchange transfusion. Fetal Diagn Ther. 2014; 36(3): 251–254.
  44. Sananès N, Veujoz M, Severac F, et al. Evaluation of the utility of in utero treatment of Twin Anemia-Polycythemia Sequence. Fetal Diagn Ther. 2015; 38(3): 170–178.
  45. Slaghekke F, Favre R, Peeters SHP, et al. Laser surgery as a management option for twin anemia-polycythemia sequence. Ultrasound Obstet Gynecol. 2014; 44(3): 304–310.
  46. Slaghekke F, van Klink JMM, Koopman HM, et al. Neurodevelopmental outcome in twin anemia-polycythemia sequence after laser surgery for twin-twin transfusion syndrome. Ultrasound Obstet Gynecol. 2014; 44(3): 316–321.
  47. Genova L, Slaghekke F, Klumper FJ, et al. Management of twin anemia-polycythemia sequence using intrauterine blood transfusion for the donor and partial exchange transfusion for the recipient. Fetal Diagn Ther. 2013; 34(2): 121–126.
  48. Lindenburg ITM, van Kamp IL, Oepkes D. Intrauterine blood transfusion: current indications and associated risks. Fetal Diagn Ther. 2014; 36(4): 263–271.
  49. Herway C, Johnson A, Moise K, et al. Fetal intraperitoneal transfusion for iatrogenic twin anemia-polycythemia sequence after laser therapy. Ultrasound Obstet Gynecol. 2009; 33(5): 592–594.
  50. Nicholas L, Fischbein R, Aultman J, et al. Dispelling myths about antenatal TAPS: a call for action for routine MCA-PSV Doppler screening in the United States. J Clin Med. 2019; 8(7).
  51. Han SJ, Lee SMi, Oh S, et al. Short- and long-term outcomes of preterm spontaneous twin anemia-polycythemia sequence. J Perinat Med. 2020 [Epub ahead of print].
  52. Tollenaar LSA, Lopriore E, Slaghekke F, et al. High risk of long-term neurodevelopmental impairment in donor twins with spontaneous twin anemia-polycythemia sequence. Ultrasound Obstet Gynecol. 2020; 55(1): 39–46.
  53. Tollenaar LSA, Lopriore E, Middeldorp JM, et al. Improved prediction of twin anemia-polycythemia sequence by delta middle cerebral artery peak systolic velocity: new antenatal classification system. Ultrasound Obstet Gynecol. 2019; 53(6): 788–793.
  54. Tollenaar LSA, Lopriore E, Middeldorp JM, et al. Prevalence of placental dichotomy, fetal cardiomegaly and starry-sky liver in twin anemia-polycythemia sequence. Ultrasound Obstet Gynecol. 2020; 56(3): 395–399.
  55. Slaghekke F, Pasman S, Veujoz M, et al. Middle cerebral artery peak systolic velocity to predict fetal hemoglobin levels in twin anemia-polycythemia sequence. Ultrasound Obstet Gynecol. 2015; 46(4): 432–436.
  56. Oepkes D, Seaward PG, Vandenbussche FP, et al. DIAMOND Study Group. Doppler ultrasonography versus amniocentesis to predict fetal anemia. N Engl J Med. 2006; 355(2): 156–164.
  57. National Institute for Health and Care Excellence (UK). Twin and triplet pregnancy. NICE Guideline, No. 137. 2019.
  58. Khalil A, Rodgers M, Baschat A, et al. ISUOG Practice Guidelines: role of ultrasound in twin pregnancy. Ultrasound Obstet Gynecol. 2016; 47(2): 247–263.
  59. Veujoz M, Sananès N, Severac F, et al. Evaluation of prenatal and postnatal diagnostic criteria for twin anemia-polycythemia sequence. Prenat Diagn. 2015; 35(3): 281–288.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk
tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl