open access

Ahead of Print
Research paper
Published online: 2021-04-21
Get Citation

The relevance of Short-Term Variation (STV) value measured within 1 hour before delivery in predicting adverse neonatal outcome

Gabriela Wilczynska1, Magdalena Nowak1, Magdalena Plonka1, Agata Staron1, Daniel Lipka1, Malgorzata Radon-Pokracka1, Hubert Huras1
DOI: 10.5603/GP.a2021.0070
·
Pubmed: 33914335
Affiliations
  1. Department of Obstetrics and Perinatology, Jagiellonian University Medical College, Cracow, Poland

open access

Ahead of Print
ORIGINAL PAPERS Obstetrics
Published online: 2021-04-21

Abstract

Objectives: Computer CTG analysis (cCTG) included short-term variation (STV) is one of the methods of monitoring fetal condition during delivery. The aim of our study was to define appropriability of STV measured within 1 hour before delivery in prediction of neonatal outcomes.

Material and methods: The retrospective study included 1014 pregnant women, who gave birth in the Department of Obstetrics and Perinatology. Participants were divided into two groups: group 1 — term pregnancies (37–41 weeks) and group 2 — preterm pregnancies (lower than 37 weeks). In each of them, two subgroups have been separated: control (STV ≥ 3 ms) and study group (STV < 3 ms).

Results: In both groups 1 and 2, there were no statistically significant differences related to Apgar scores in 1st, 3rd and 5th minute between group with STV < 3 ms and group with STV > 3 ms Moreover, for 37–41 weeks the sensitivity, specificity, positive predictive value and negative predictive value were: 22.7%, 83.9%, 3.3% and 97.8% and for lower than 37: 45.7%, 65.4%, 47.1%, 64.2% in 1th minute after delivery. In group 1 the area under curve (AUC) measurements were 0.45 (95% CI: 0.32–0.58) for 1st minute and 0.55 (95% CI: 0.35–0.74) for 5th minute and in group 2: 0.58 (95% CI: 0.45–0.71) for 1th minute and 0.57 (95% CI: 0.42–0.72) for 5th minute.

Conclusions: High specificity and negative predictive value of STV indicates a good Apgar score of newborns in term pregnancies. Analysis of STV in preterm pregnancy is not clear. Fetal well-being in preterm pregnancy should include STV and other non-invasive and invasive tools.

Abstract

Objectives: Computer CTG analysis (cCTG) included short-term variation (STV) is one of the methods of monitoring fetal condition during delivery. The aim of our study was to define appropriability of STV measured within 1 hour before delivery in prediction of neonatal outcomes.

Material and methods: The retrospective study included 1014 pregnant women, who gave birth in the Department of Obstetrics and Perinatology. Participants were divided into two groups: group 1 — term pregnancies (37–41 weeks) and group 2 — preterm pregnancies (lower than 37 weeks). In each of them, two subgroups have been separated: control (STV ≥ 3 ms) and study group (STV < 3 ms).

Results: In both groups 1 and 2, there were no statistically significant differences related to Apgar scores in 1st, 3rd and 5th minute between group with STV < 3 ms and group with STV > 3 ms Moreover, for 37–41 weeks the sensitivity, specificity, positive predictive value and negative predictive value were: 22.7%, 83.9%, 3.3% and 97.8% and for lower than 37: 45.7%, 65.4%, 47.1%, 64.2% in 1th minute after delivery. In group 1 the area under curve (AUC) measurements were 0.45 (95% CI: 0.32–0.58) for 1st minute and 0.55 (95% CI: 0.35–0.74) for 5th minute and in group 2: 0.58 (95% CI: 0.45–0.71) for 1th minute and 0.57 (95% CI: 0.42–0.72) for 5th minute.

Conclusions: High specificity and negative predictive value of STV indicates a good Apgar score of newborns in term pregnancies. Analysis of STV in preterm pregnancy is not clear. Fetal well-being in preterm pregnancy should include STV and other non-invasive and invasive tools.

Get Citation

Keywords

cardiotocography (CTG); short-term variation; intrapartum monitoring; APGAR score

About this article
Title

The relevance of Short-Term Variation (STV) value measured within 1 hour before delivery in predicting adverse neonatal outcome

Journal

Ginekologia Polska

Issue

Ahead of Print

Article type

Research paper

Published online

2021-04-21

DOI

10.5603/GP.a2021.0070

Pubmed

33914335

Keywords

cardiotocography (CTG)
short-term variation
intrapartum monitoring
APGAR score

Authors

Gabriela Wilczynska
Magdalena Nowak
Magdalena Plonka
Agata Staron
Daniel Lipka
Malgorzata Radon-Pokracka
Hubert Huras

References (15)
  1. Wretler S, Holzmann M, Graner S, et al. Fetal heart rate monitoring of short term variation (STV): a methodological observational study. BMC Pregnancy Childbirth. 2016; 16: 55.
  2. Galazios G, Tripsianis G, Tsikouras P, et al. Fetal distress evaluation using and analyzing the variables of antepartum computerized cardiotocography. Arch Gynecol Obstet. 2010; 281(2): 229–233.
  3. WHO recommendations on intervention to improve preterm birth outcomes . https://apps.who.int/iris/bitstream/handle/10665/183037/?sequence=1.
  4. Leeflang MMG. Systematic reviews and meta-analyses of diagnostic test accuracy. Clin Microbiol Infect. 2014; 20(2): 105–113.
  5. Hoo ZH, Candlish J, Teare D. What is an ROC curve? Emerg Med J. 2017; 34(6): 357–359.
  6. Cnattingius S, Norman M, Granath F, et al. Apgar Score Components at 5 Minutes: Risks and Prediction of Neonatal Mortality. Paediatr Perinat Epidemiol. 2017; 31(4): 328–337.
  7. Simon R. Sensitivity, Specificity, PPV, and NPV for Predictive Biomarkers. J Natl Cancer Inst. 2015; 107(8).
  8. Bandos AI, Guo B, Gur D. Estimating the Area Under ROC Curve When the Fitted Binormal Curves Demonstrate Improper Shape. Acad Radiol. 2017; 24(2): 209–219.
  9. Pinas A, Chandraharan E. Continuous cardiotocography during labour: Analysis, classification and management. Best Pract Res Clin Obstet Gynaecol. 2016; 30: 33–47.
  10. Leszczynska-Gorzelak B, Poniedzialek-Czajkowska E, Oleszczuk J. Intrapartum cardiotocography and fetal pulse oximetry in assessing fetal hypoxia. Int J Gynaecol Obstet. 2002; 76(1): 9–14.
  11. Gyllencreutz E, Lu Ke, Lindecrantz K, et al. Validation of a computerized algorithm to quantify fetal heart rate deceleration area. Acta Obstet Gynecol Scand. 2018; 97(9): 1137–1147.
  12. Giuliano N, Annunziata ML, Esposito FG, et al. Computerised analysis of antepartum foetal heart parameters: New reference ranges. J Obstet Gynaecol. 2017; 37(3): 296–304.
  13. Mullins E, Lees C, Brocklehurst P. Is continuous electronic fetal monitoring useful for all women in labour? BMJ. 2017; 359: j5423.
  14. Wolf H, Gordijn SJ, Onland W, et al. Computerized fetal heart rate analysis in early preterm fetal growth restriction. Ultrasound in Obstetrics & Gynecology. 2020; 56(1): 51–60.
  15. Verdurmen KMJ, Warmerdam GJJ, Lempersz C, et al. The influence of betamethasone on fetal heart rate variability, obtained by non-invasive fetal electrocardiogram recordings. Early Hum Dev. 2018; 119: 8–14.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk
tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl