Vol 88, No 11 (2017)
Research paper
Published online: 2017-11-30

open access

Page views 1370
Article views/downloads 1833
Get Citation

Connect on Social Media

Connect on Social Media

Birth body length, birth body weight and birth head circumference in neonates born in a single centre between 2011 and 2016

Beata Pawlus1, Andrzej Wiśniewski2, Paweł Kubik1, Katarzyna Milde3, Leszek Gmyrek1, Ewa Pęsko1
Pubmed: 29303213
Ginekol Pol 2017;88(11):599-605.

Abstract

   Objectives: Access to updated and accurate standards for local populations is important for the interpretation of body measurements in neonates and may have an impact on the doctor’s recommendations for monitoring early childhood development. Study aim: to present individual mean values for the most prevalent body measurements (i.e. birth body length (BBL), birth body weight (BBW) and birth head circumference (BHC)) in neonates and compare them to the duration of pregnancy. Material and methods: The measurements (BBL, BBW and BHC) were collected and analyzed from over 27,000 neonates born in a single center. All women with single pregnancies with gestation ranging from 33 to 42 weeks were included in the study. Results: Mean values and statistically significant standard deviation values from population standards of BBL, BBW, and BHC were evaluated for neonates that were born between the 33rd and 42nd week of gestation. Analysis was conducted for the lower limit (10th percentile), average (50th percentile) and upper limit (90th percentile). Conclusions: This was the first time in Polish literature when population standards were presented for three body meas­urements of neonates. With the size of the cohort, these standards can be successfully implemented into routine clinical practice, especially for screening children with body size deficits.  

Article available in PDF format

View PDF Download PDF file

References

  1. Holt LE. Holt Diseases of Infancy and Childhood, Holt-McIntosh’s Textbook of Pediatrics, New York-Presbyterian Morgan Stanley Children’s Hospital. ; 1896.
  2. YLPPO A. New classification and nomenclature for newborn infants including prematures and abortions. Acta Paediatr. 1948; 35(Suppl 1): 160–163.
  3. Barker DJP, Osmond C. Infant mortality, childhood nutrition and ischaemic heart disease in England and Wales. Lancet. 1986; 327(1): 1077–1081.
  4. Barker DJP, Osmond C, Winter PD, et al. Weight in infancy and death from ischemic heart disease. Lancet. 1989; 334(2): 577–580.
  5. Hales CN, Barker DJP, Clark PM, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991; 303(6809): 1019–1022.
  6. David JP. Barker DJP, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG. The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail. 2010; 12(8): 819–825.
  7. Seremak-Mrozikiewicz A, Barlik M, Drews K. Programowanie wewnątrzmaciczne jako przyczyna chorób przewlekłych wieku dorosłego. Ginekol Pol. 2014; 85(1): 43–48.
  8. Boguszewski M, Rosberg S, Albertsson-Wikland K. Spontaneous 24-hour growth hormone profiles in prepubertal small for gestational age children. J Clin Endocrinol Metab. 1995; 80(9): 2599–2606.
  9. Boguszewski M, Jansson C, Rosberg S, et al. Changes in serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 levels during growth hormone treatment in prepubertal short children born small for gestational age. J Clin Endocrinol Metab. 1996; 81(11): 3902–3908.
  10. Karlberg J, Albertsson-Wikland K. Growth in full-term small-for-gestational-age infants: from birth to final height. Pediatr Res. 1995; 38(5): 733–739.
  11. Boguszewski M, Albertsson-Wikland K, Aronsson S, et al. Growth hormone treatment of short children born small-for-gestational-age: the Nordic Multicentre Trial. Acta Paediatr. 1998; 87(3): 257–263.
  12. Haymond M, Kappelgaard AM, Czernichow P, et al. Early recognition of growth abnormalities permitting early intervention. Acta Paediatr. 2013; 102(8): 787–796.
  13. Gardosi J. Customised assessment of fetal growth potential: implications for perinatal care. Arch Dis Child: Fetal Neonatal Ed. 2012; 97(5): F314–317.
  14. Eide MG, Oyen N, Skjaerven R, et al. Size at birth and gestational age as predictors of adult height and weight. Epidemiology. 2005; 16(2): 175–181.
  15. Gibson AT, Carney S, Wright NP, et al. Measurement and the newborn infant. Horm Res. 2003; 59(suppl. 1): 119–128.
  16. Torres EB, Smith B, Mistry S, et al. Neonatal Diagnostics: Toward Dynamic Growth Charts of Neuromotor Control. Front Pediatr. 2016; 4: 121.
  17. Giuliani F, Ohuma E, Spada E, et al. Systematic review of the methodological quality of studies designed to create neonatal anthropometric charts. Acta Paediatr. 2015; 104(10): 987–996.
  18. de Onis M, Garza C, Victora CG, et al. The WHO Multicentre Growth Reference Study: strategy for developing a new international growth reference. Forum Nutr. 2003; 56: 238–240.
  19. de Onis M, Onyango AW, Van den Broeck J, et al. Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food Nutr Bull. 2004; 25(1 Suppl): S27–S36.
  20. WHO: http://www.who.int/childgrowth/standards/weight_for_height/en/. (12.07.2017).
  21. Ziegler EE, Nelson SE. The WHO growth standards: strengths and limitations. Curr Opin Clin Nutr Metab Care. 2012; 15(3): 298–302.
  22. Natale V, Rajagopalan A. Worldwide variation in human growth and the World Health Organization growth standards: a systematic review. BMJ Open. 2014; 4(1): e003735.
  23. Christesen HT, Pedersen BT, Pournara E, et al. Short Stature: Comparison of WHO and National Growth Standards/References for Height. PLoS One. 2016; 11(6): e0157277.
  24. Wolański N, Wolański N. Organizacja i przeprowadzenie badań kontrolnych. Metody kontroli i normy rozwoju dzieci i młodzieży, PZWL, Warszawa 1975, 98-106, 232.
  25. Krajewska A, Kuliś K, Krajewska A, et al. Kondycja biologiczna noworodków z Kędzierzyna-Koźla urodzonych w 2004 roku. Nowa Pediatr. 2006; 1: 16–21.
  26. Zatorska M, Zatorska M. Evaluation of acceleration of somatic development of Lublin newborns over the period of twenty years. Stud Hum Ecol. 1992; 10: 83–93.
  27. Rosset I, Rosset I. Rozkłady centylowe wielkości urodzeniowych noworodków łódzkich urodzonych w terminie. Ped Pol. 2009; 84: 151–158.
  28. Malewski Z, Słomko Z, Uklejewski A, et al. Relationship between gestational age and birth weight in Wielkopolska region. Klin Perinat Gin. 1995; 2: 734–741.
  29. Gadzinowski J, Kaliszewska-Drozdowska MD, Kosińska M, et al. Urodzeniowa masa ciała a wiek płodowy noworodków regionu Wielkopolski i Ziemi Lubuskiej. Gin Pol. 2003; 74(3): 186–192.
  30. Kurniewicz-Witczakowa R, Miesowicz I, Niedźwiecka Z, et al. Siatki centylowe wysokości, masy ciała oraz grubości fałdów skórno-tłuszczowych dzieci i młodzieży warszawskiej od urodzenia do 18 roku życia. Probl Med Wieku Rozw. 1983; 12: 56–67.
  31. Kaliszewska-Drozdowska MD, Kaliszewska-Drozdowska MD. Noworodek – stan rozwoju fizycznego i trendy rozwojowe urodzeniowej masy ciała. Przegl Antrop. 1992; 55 (1-2. : 33–43.
  32. Wiśniewski A, Pawlus B, Milde K, et al. Body measurements of neonates born at one centre in the administrative region of Masovia in the years 2011-2015. Ped Pol. 2017; available online 30 May 2017.
  33. Nielsen AM, Olsen EM, Juul A. New Danish reference values for height, weight and body mass index of children aged 0-5 years. Acta Paediatr. 2010; 99(2): 268–278.
  34. Vayssière C, Sentilhes L, Ego A, et al. Fetal growth restriction and intra-uterine growth restriction: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians. Eur J Obstet Gynecol Reprod Biol. 2015; 193: 10–18.
  35. Villar J, Papageorghiou AT, Pang R, et al. Monitoring human growth and development: a continuum from the womb to the classroom. Am J Obstet Gynecol. 2015; 213(4): 494–499.
  36. Hwang IlT. Efficacy and safety of growth hormone treatment for children born small for gestational age. Korean J Pediatr. 2014; 57(9): 379–383.
  37. Monier I, Blondel B, Ego A, et al. Does the presence of risk factors for fetal growth restriction increase the probability of antenatal detection? A French National Study. Paediatr Perinat Epidemiol. 2016; 30(1): 46–55.
  38. Eriksson JG. Early growth and coronary heart disease and type 2 diabetes: findings from the Helsinki Birth Cohort Study (HBCS). Am J Clin Nutr. 2011; 94(6 suppl): 1799S–1802S.
  39. Wiśniewski A, Milde K, Stupnicki R. Fetal dystrophy-one of the feature of Turner syndrome. Endokrynol Diabetol. 2005; 11(3): 177–180.