open access

Vol 88, No 1 (2017)
ORIGINAL PAPERS Gynecology
Published online: 2017-01-31
Get Citation

Total testosterone to dihydrotestosterone ratio assessed by LC-MS/MS predicts a worse metabolic profile not only in PCOS patients

Urszula Ambroziak, Alina Kuryłowicz, Anna Kępczyńska-Nyk, Zbigniew Bartoszewicz, Agnieszka Kondracka, Radosław Jaźwiec, Emilia Samborowska, Michał Dadlez, Aleksandra Wysłouch-Cieszyńska, Tomasz Bednarczuk
DOI: 10.5603/GP.a2017.0001
·
Ginekol Pol 2017;88(1):5-8.

open access

Vol 88, No 1 (2017)
ORIGINAL PAPERS Gynecology
Published online: 2017-01-31

Abstract

Objectives: Total testosterone/dihydrotestosterone ratio (TT/DHT) was found to determine metabolic risk in polycystic ovary syndrome (PCOS). The aim of this study was to analyze whether (TT/DHT) may be helpful in predicting metabolic risk not only in PCOS patients but also in healthy women.

Material and methods: Total testosterone (TT), dihydrotestosterone (DHT), androstendione and dehydroepiandrosterone sulphate (DHEA-S) were measured by LC-MS/MS in 36 women with PCOS and in 29 age-matched controls without clinical hyperandrogenism. In all participants, anthropometric data, lipids, adipose tissue percent (%fat), HOMA-IR were also assessed.

Results: The studied groups were not different in terms of age, BMI, waist circumference, %fat and HOMA-IR. In the patients group, mean TT and androstendione levels were significantly higher as compared to controls (1.4 nmol/L vs. 1.0 nmol/L, P < 0.001) and (6.6 nmol/L vs. 4.9 nmol/L, P < 0.01), respectively. In the patients group, mean TT/DHT ratio was significantly higher compared to controls (3.6 vs. 2.7, P < 0.01) and correlated with BMI (r = 0.37, P < 0.05), waist circumference (r = 0.44, P < 0.01), %fat (r = 0.30, P < 0.05), as well as with insulin levels (r = 0.38, P < 0.05) and HOMA-IR (r = 0.44, P < 0.05). The association between TT/DHT ratio and unfavorable metabolic parameters was also seen in controls.

Conclusion: Total testosterone/dihydrotestosterone ratio assessed by LC-MS/MS correlates with a worse metabolic profile not only in PCOS patients, but also in healthy women.

Abstract

Objectives: Total testosterone/dihydrotestosterone ratio (TT/DHT) was found to determine metabolic risk in polycystic ovary syndrome (PCOS). The aim of this study was to analyze whether (TT/DHT) may be helpful in predicting metabolic risk not only in PCOS patients but also in healthy women.

Material and methods: Total testosterone (TT), dihydrotestosterone (DHT), androstendione and dehydroepiandrosterone sulphate (DHEA-S) were measured by LC-MS/MS in 36 women with PCOS and in 29 age-matched controls without clinical hyperandrogenism. In all participants, anthropometric data, lipids, adipose tissue percent (%fat), HOMA-IR were also assessed.

Results: The studied groups were not different in terms of age, BMI, waist circumference, %fat and HOMA-IR. In the patients group, mean TT and androstendione levels were significantly higher as compared to controls (1.4 nmol/L vs. 1.0 nmol/L, P < 0.001) and (6.6 nmol/L vs. 4.9 nmol/L, P < 0.01), respectively. In the patients group, mean TT/DHT ratio was significantly higher compared to controls (3.6 vs. 2.7, P < 0.01) and correlated with BMI (r = 0.37, P < 0.05), waist circumference (r = 0.44, P < 0.01), %fat (r = 0.30, P < 0.05), as well as with insulin levels (r = 0.38, P < 0.05) and HOMA-IR (r = 0.44, P < 0.05). The association between TT/DHT ratio and unfavorable metabolic parameters was also seen in controls.

Conclusion: Total testosterone/dihydrotestosterone ratio assessed by LC-MS/MS correlates with a worse metabolic profile not only in PCOS patients, but also in healthy women.

Get Citation

Keywords

testosterone, dihydrotestosterone, liquid chromatography/mass spectrometry, polycystic ovary syndrome, hyperandrogenism

About this article
Title

Total testosterone to dihydrotestosterone ratio assessed by LC-MS/MS predicts a worse metabolic profile not only in PCOS patients

Journal

Ginekologia Polska

Issue

Vol 88, No 1 (2017)

Pages

5-8

Published online

2017-01-31

DOI

10.5603/GP.a2017.0001

Bibliographic record

Ginekol Pol 2017;88(1):5-8.

Keywords

testosterone
dihydrotestosterone
liquid chromatography/mass spectrometry
polycystic ovary syndrome
hyperandrogenism

Authors

Urszula Ambroziak
Alina Kuryłowicz
Anna Kępczyńska-Nyk
Zbigniew Bartoszewicz
Agnieszka Kondracka
Radosław Jaźwiec
Emilia Samborowska
Michał Dadlez
Aleksandra Wysłouch-Cieszyńska
Tomasz Bednarczuk

References (16)
  1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004; 81(1): 19–25.
  2. Randeva HS, Tan BK, Weickert MO, et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr. Rev. 2012; 33(5): 812–841.
  3. Mani H, Levy MJ, Davies MJ, et al. Diabetes and cardiovascular events in women with polycystic ovary syndrome: a 20-year retrospective cohort study. Clin. Endocrinol. (Oxf). 2013; 78(6): 926–934.
  4. Münzker J, Hofer D, Trummer C, et al. Testosterone to dihydrotestosterone ratio as a new biomarker for an adverse metabolic phenotype in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2015; 100(2): 653–660.
  5. Shroff R, Syrop CH, Davis W, et al. Risk of metabolic complications in the new PCOS phenotypes based on the Rotterdam criteria. Fertil. Steril. 2007; 88(5): 1389–1395.
  6. Stanczyk FZ, Clarke NJ. Advantages and challenges of mass spectrometry assays for steroid hormones. J. Steroid Biochem. Mol. Biol. 2010; 121(3-5): 491–495.
  7. Honour JW. 17-Hydroxyprogesterone in children, adolescents and adults. Ann. Clin. Biochem. 2014; 51(Pt 4): 424–440.
  8. Ambroziak U, Kępczyńska-Nyk A, Kuryłowicz A, et al. LC-MS/MS improves screening towards 21-hydroxylase deficiency. Gynecol. Endocrinol. 2015; 31(4): 296–300.
  9. FERRIMAN D, GALLWEY JD. Clinical assessment of body hair growth in women. J. Clin. Endocrinol. Metab. 1961; 21: 1440–1447.
  10. Koal T, Schmiederer D, Pham-Tuan H, et al. Standardized LC-MS/MS based steroid hormone profile-analysis. J. Steroid Biochem. Mol. Biol. 2012; 129(3-5): 129–138.
  11. Ollila MME, Piltonen T, Puukka K, et al. Weight Gain and Dyslipidemia in Early Adulthood Associate With Polycystic Ovary Syndrome: Prospective Cohort Study. J. Clin. Endocrinol. Metab. 2016; 101(2): 739–747.
  12. Valderhaug TG, Hertel JK, Nordstrand N, et al. The association between hyperandrogenemia and the metabolic syndrome in morbidly obese women. Diabetol Metab Syndr. 2015; 7: 46.
  13. Moran L, Teede H. Metabolic features of the reproductive phenotypes of polycystic ovary syndrome. Hum. Reprod. Update. 2009; 15(4): 477–488.
  14. Li H, Xu X, Wang X, et al. Free androgen index and Irisin in polycystic ovary syndrome. J. Endocrinol. Invest. 2016; 39(5): 549–556.
  15. Akin F, Bastemir M, Kaptanoglu B. Relationship between insulin and sex hormone-binding globulin levels during weight loss in obese women. Ann. Nutr. Metab. 2007; 51(6): 557–562.
  16. Lerchbaum E, Schwetz V, Rabe T, et al. Hyperandrogenemia in polycystic ovary syndrome: exploration of the role of free testosterone and androstenedione in metabolic phenotype. PLoS ONE. 2014; 9(10): e108263.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk
tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl