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ABSTRACT
Introduction: Inborn errors of metabolism (IEM) also called metabolic diseases constitute a large and heterogenous group 
of disorders characterized by a failure of essential cellular functions. Antenatal manifestation of IEM is absent or nonspecific, 
which makes prenatal diagnosis challenging. Glutaric acidemia type 2 (GA2) is a rare metabolic disease clinically manifested 
in three different ways: neonatal-onset with congenital anomalies, neonatal-onset without congenital anomalies and 
late-onset. Neonatal forms are usually lethal. Congenital anomalies present on prenatal ultrasound as large, hyperechoic 
or cystic kidneys with reduced amniotic fluid volume. 

Material and methods: We present a systematic literature review describing prenatal diagnosis of GA2 and a new prenatal case.

Results: Ten prenatally diagnosed cases of GA2 have been published to date, mainly based on biochemical methods. New 
case of GA2 was diagnosed using exome sequencing method.

Discussion: All prenatal cases from literature review had positive history of GA2 running in the family. In our study trio 
exome sequencing was performed in case of fetal hyperechoic kidneys without a history of GA2. Consequently, we were 
able to identify two novel pathogenic variants of the ETFDH gene and to indicate their parental origin. 

Summary: Exome sequencing approach used in case of fetal hyperechoic kidneys allows to identify pathogenic variants 
without earlier knowledge of the precise genetic background of the disease. Hyperechoic, enlarged kidneys could be one 
of the clinical features of metabolic diseases. After exclusion of chromosomal abnormalities, urinary tract obstruction and 
intrauterine infections, glutaric acidemia type 2 and number of monogenic disorders should be consider. 
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INTRODUCTION
Inborn errors of metabolism — overview

Inborn errors of metabolism (IEM) also called metabolic 
diseases constitute a large and heterogenous group of dis-
orders characterized by a failure of essential cellular func-
tions. In the vast majority of IEM single gene mutation causes 
production of defective enzyme and in consequence disrup-
tion of cellular metabolic pathways leading to a deficiency 
of vital metabolites, deficiency of energy or accumulation of 
toxic substrates [1]. However, depending on the type of the 

mutation and its position along the gene residual enzyme 
activity in affected fetus is possible [2, 3]. Moreover, during 
pregnancy gas exchange, nutrients supply and metabolic 
waste elimination occur mainly due to maternal metabo-
lism [4]. For these reasons many of IEM are asymptomatic 
in the fetus. Clinical features of IEM like vomiting, impaired 
multiorgan function, encephalopathy, hypoglycemia, hy-
perammonemia or acidemia starts days, weeks, months or 
even years after birth and are often life-threatening. How-
ever, in some of IEM severe metabolic disorder disrupt fetal 
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development and congenital anomalies occur. Antenatal 
manifestation of IEM is nonspecific and include nonimmune 
hydrops fetalis, intrauterine growth restriction, central nerv-
ous system anomalies, heart defects, hyperechoic kidneys 
or skeletal anomalies what makes prenatal diagnosis of IEM 
challenging [5]. 

Glutaric acidemia type 2 — basic facts
One of the IEM associated with fetal anomalies is glu-

taric acidemia type 2 (GA2; OMIM #231680). GA2 is a rare 
metabolic disease with a birth prevalence estimated at 
1:250.000 [6]. Disease causing Multiple acyl-coenzyme A De-
hydrogenase Deficiency (MADD) is clinically manifested 
in three different ways: neonatal-onset with congenital 
anomalies, neonatal-onset without congenital anomalies 
and late-onset. Both neonatal forms are usually lethal due 
to metabolic acidosis, hypoglycemia and multiorgan failure 
while late-onset form is highly variable and severe clinical 
deterioration or sudden death may occur at any age even 
without previous symptoms [3, 7]. In cases with prenatal 
manifestation congenital anomalies present on ultrasound 
as large, hyperechoic or cystic kidneys with reduced amni-
otic fluid volume [8]. Prenatal diagnosis of GA2 can be es-
tablished based on dehydrogenase activity measurements, 
organic acids profile, acylcarnitine profile or genetic testing 
[9]. Pathogenic variants can be identified in one of the three 
genes (ETFA, ETFB, ETFDH) inherited in an autosomal reces-
sive manner [10–12]. Differential diagnosis in cases with 
prenatally detected anomalies includes trisomy 13 or 18, 
autosomal recessive polycystic kidney disease (ARPKD), 
renal cysts and diabetes syndrome, nephronophthisis, 
Joubert syndrome, Bardet-Biedl syndrome, Meckel-Gruber 
syndrome, oral-facial-digital syndrome type 1 and other 
rare monogenic disorders, cytomegalovirus intrauterine 
infection or urinary tract obstruction with kidney dysplasia 
[13]. Herein we present a systematic literature review of all 
prenatally detected cases of GA2. We also report on a first 
prenatal diagnosis of GA2 established by exome sequencing 
(ES) as an example of a diagnostic pathway from nonspecific 
sonographic features to exact genetic diagnosis.

MATERIALS AND METHODS
Search strategy

The authors performed a systematic literature review 
for any study reporting prenatal diagnosis of GA2 published 
between first description of the disease in 1976 until Decem-
ber 2019. Review was conducted using Pubmed/MEDLINE 
and Web of Science databases. The search strategy with 
following formula was applied: (glutaric aciduria OR glu-
taric acidemia OR madd) AND (prenatal OR antenatal OR 
fetus OR fetal). There was no language restriction placed 
on the manuscript search. Additionally, the references of 

all selected manuscripts were screened for subsequent re-
ports. Papers available in full text in which authors described 
methods used for prenatal diagnosis of GA2 in ongoing 
pregnancy not in stored material and in which diagnosis 
was positive were included. Papers not containing prenatal 
cases of GA2 or containing cases with negative diagnosis 
true or false were excluded. The systematic review flowchart 
and search strategy are summarized in Figure 1.

New case report 
Clinical presentation

A 35-year-old patient presented in our ultrasound de-
partment for a detailed anomaly scan at 20 weeks of her 
third gestation due to history of complications in a previous 
pregnancies. Her first pregnancy ended in early miscarriage. 
Her second pregnancy was complicated by fetal anoma-
lies — enlarged cystic kidneys, oligohydramnios and large 
cavum septi pellucidi (CSP). A full-term newborn delivered 
via cesarean section due to transverse presentation died 
2 hours after birth. Prenatal karyotype was normal, and 
the patient was informed that a potential cause of fetal 
malformations was an autosomal recessive polycystic kidney 
disease (ARPKD) caused by PKHD1 gene mutation. However, 
an autopsy was not performed, and only a buccal swab was 
taken from the newborn for molecular tests. Sequencing 
for the most frequent pathogenic variants in exons 32 and 
36 of PKHD1 gene gave negative result and ARPKD could 
not be confirmed nor excluded. The initial ultrasound scan at 
20 weeks of patient’s third pregnancy evaluated in our ultra-

Figure 1. Flowchart for literature review
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sound department revealed large CSP, enlarged hyperechoic 
kidneys and normal amount of the amniotic fluid (Fig. 2A). 
After a detailed ultrasound scanning, fetal urinary tract ob-
struction was excluded. Routine screening tests for rubella, 
toxoplasmosis, cytomegalovirus, hepatitis-B, hepatitis-C, 
HIV and syphilis were negative. After genetic counsel, due 
to positive history and current fetal anomalies, the patient 
decided to continue the pregnancy aware of high risk of 
fetal or neonatal death. Amniocentesis was performed for 
cytogenetic and molecular tests as described in next sec-
tions. During the third trimester amniotic fluid volume de-
creased leading to a Potter sequence (flattened nose, retrog-
nathia, low-set abnormal ears, pulmonary hypoplasia, club 
feet caused by small amount of amniotic fluid surrounding 
the fetus). The child was liveborn at 37 weeks of pregnancy 
via cesarean section due to breach presentation and died 
after 2 hours from metabolic and multiorgan failure. In the 
postmortem examination both kidneys were enlarged. In 
cross section no cyst has been found during the macroscopic 
examination (Fig. 2B). The lungs appeared hypoplastic. The 
liver seemed to be enlarged, but no pathologic findings 
on cross section were stated. No abnormalities were found 
in the heart, central nervous system, bile and pancreatic 
ducts. On microscopic examination both kidneys contained 
many round, simple cysts, which were lined by cuboidal or 
flattened epithelium. In the medulla they were surrounded 
by loose mature mesenchymal tissue (Fig. 2C–D). The liver 
presented features of adiposis and preserved extramedul-

lary hematopoiesis. Some fibrosis around portal and central 
spaces of the lobe were detected.

Cytogenetic testing
Fetal DNA isolated initially from uncultured amniotic 

fluid and then from cultured amniocytes was obtained. Array 
comparative hybridization (aCGH) was performed on DNA 
from uncultured amniotic fluid using CytoSure Constitu-
tional v3 (8 × 60 k) array (Oxford Gene Technology). Karyo-
type was performed on cultured amniocytes. Karyotype and 
aCGH revealed normal results for both tests. Parental DNA 
was isolated from peripheral blood of each parent. Subse-
quently fetal DNA from cultured amniocytes and parental 
DNA were sent to the external laboratory for sequencing 
(CeGaT GmbH, Tübingen, Germany).

Exome sequencing
ES was performed simultaneously for the fetus, mother 

and father (trio). SureSelect Human All Exon enrichment kit 
v.6 (Agilent) was used for library preparation and capture. All 
laboratory preparations were done according to the manu-
facturers’ protocols. The final products were sequenced 
on NovaSeq6000 (Illumina) with 100-bp paired-end reads 
generating raw sequence data stored in FASTQ format. Raw 
data were post-processed on site using the bcbio-nextgen 
pipeline [14]. DNA short reads were mapped against hu-
man genome reference sequence (GRCh38/hg38) using 
Burrows-Wheeler Alignment (BWA) and stored as binary 
Sequence Alignment Map (BAM) [15]. BAM files analysis 
using Genome Analysis Toolkit (GATK) and variant call-
ing using GATKHaplotype Caller were performed [16, 17]. 
Next, ANNOVAR was used to annotate relevant informa-
tion about gene names, predicted variant pathogenicity, 
reference allele frequencies and metadata from external 
resources and to add these data to the Variant Call Format 
(VCF) file [18]. Finally, we used HMZDelFinder algorithm 
to search for small deletions which were not detected by 
aCGH [19]. As a control we were able to use exome data 
from approximately 300 samples sequenced at the same 
platform and processed using the same pipeline. ES analysis 
revealed novel pathogenic variants on both alleles of ETFDH 
gene consistent with a diagnosis of GA2. Nonsense variant 
NM_001281738:c[1191C > A] was of maternal origin and 
frameshift variant NM_001281738:c[1560A>-] was of pa-
ternal origin (Fig. 3). Prenatal ultrasound, prenatal genetic 
tests and post-mortem examination support the diagnosis 
of GA2. 

RESULTS
The literature search for prenatal glutaric acidemia 

yielded a total of 136 publications. Based on metadata and 
abstracts screening for duplicates and irrelevant publica-

Figure 2. Kidneys in glutaric aciduria type 2; A. Ultrasound imaging 
at 24 weeks of gestation showing large hyperechoic kidneys; B. Cross 
section in postmortem examination of 37 weeks newborn — enlarged 
kidneys without macroscopic cysts; C. Microscopic examination with 
hematoxylin and eosin staining and magnification 400× — cortical 
cysts of the kidney; D. Microscopic examination with hematoxylin and 
eosin staining and magnification 400× — medullary cyst of the kidney
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tions were performed and excluded 118 items (e.g. glu-
taric acidemia type 1). Then, based on full-text analysis nine 
further publications were excluded for irrelevant content, 
duplicate cases or no full-text availability (e.g. diagnosis of 
GA2 in stored material, negative diagnosis of GA2). Nine 
records were included for final analysis. Eight publications 
reported a single case and one publication reported two 
cases. The available data on prenatal diagnosis of GA2 con-
cerning ten cases from literature review and one new case 
are summarized in Table 1 [20–28].

DISCUSSION
Prenatal diagnosis of glutaric acidemia 2 

— current state of knowledge and clinical 
implications

Despite the continuous development of knowledge 
and technology in the field of genetics and ultrasound 
diagnostics, a large proportion of cases are still underdi-
agnosed or undiagnosed. This happens also in the case of 
GA2. Although prenatal diagnosis of GA2 is possible, only 
10 prenatally diagnosed cases have been reported in over 
40 years after first description of the disease [29]. In the ma-

Table 1. Literature review

Ref.
Family history of 
previously diagnosed 
GA 2

Prenatal presentation Material Diagnostic method Outcome

20. positive N/A
cultured amniotic cells enzyme activity (RA)

TOP
amniotic fluid organic acids profile (GC/MS)

21. positive N/A
cultured amniotic cells enzyme activity (RA)

TOP
amniotic fluid organic acids profile (GC/MS)

22. positive no renal defects in US
raised serum AFP amniotic fluid organic acids profile (GC/MS) TOP

23. positive N/A cultured amniotic cells enzyme activity (RA) live born - died 
after 4 months

24. positive N/A
cultured amniotic cells enzyme activity (RA)

TOP
amniotic fluid organic acids profile (GC/MS)

25. positive no defects in US cultured amniotic cells enzyme structure (IMA) live born - doing 
well at 6 months

26.
case 1 positive N/A

amniotic fluid organic acids profile (LC/MS)

TOPamniotic fluid acylcarnitine profile (FAB/MS)

maternal urine acylcarnitine profile (FAB/MS)

26.
case 2 positive N/A

amniotic fluid acylcarnitine profile (FAB/MS) live born - no 
other datamaternal urine acylcarnitine profile (FAB/MS)

27. positive large, hyperechoic kidneys
normal amniotic fluid – US TOP

28. positive large, hyperechoic kidneys
raised serum and amniotic AFP

amniotic fluid acylcarnitine profile (MS/MS)
TOP

cultured amniotic cells enzyme activity (SIA)

present 
study negative large, hyperechoic kidneys

oligohydramnios cultured amniotic cells DNA analysis (ES) live born - died 
after 2 hours

US — ultrasound examination; AFP — alpha-fetoprotein; RA - radioisotope assays; GC/MS — gas chromatography/mass spectrometry; IMA — immunochemical assays; 
LC/MS — liquid chromatography/mass spectrometry; FAB/MS — fast atom bombardment/ mass spectrometry; MS/MS — tandem mass spectrometry; SIA — stable 
isotope assays; ES — exome sequencing; TOP — termination of pregnancy; N/A — not available

Figure 3. Exome sequencing of trio: nonsense pathogenic 
variant NM_001281738:c[1191C > A] of ETFDH gene in mother 
and fetus (upper image), frameshift pathogenic variant 
NM_001281738:c[1560A>-] of ETFDH gene in father and fetus (lower 
image). Fetus is compound heterozygote of two pathogenic variants
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jority of cases prenatal diagnosis relied on enzyme activity 
measurement in cultured amniotic cells and/or glutaric acid 
measurement in the amniotic fluid while in other cases it 
was based on acylcarnitine profile in maternal urine and/or 
amniotic fluid, enzyme structure analysis or on ultrasound 
examination [20–28]. Measurement of enzyme activity is 
time-consuming, troublesome and available in a limited 
number of laboratories [30]. On the other hand glutaric acid 
measurement in the amniotic fluid by gas or liquid chroma-
tography/mass spectrometry (GC/MS or LC/MS) is fast and 
simple, but it is prone to false negative diagnosis if the fetus 
does not excrete large amount of glutaric acid [26, 31]. Both 
tests are frequently used simultaneously to minimize the 
risk of misdiagnosis. Furthermore, acylcarnitine profile in 
the maternal urine may be unreliable as both abnormal as 
well as normal values have been reported in affected fetuses 
[26, 32]. DNA sequencing targeted for known pathogenic 
variants of ETFA, ETFB and ETFDH genes has already been 
performed in fetuses at risk of GA2. It demonstrated its 
potential usefulness as a diagnostic tool by giving nega-
tive results in unaffected fetuses [7]. Molecular analysis has 
also an advantage in cases with severe oligohydramnios as 
DNA can be isolated from fetal blood or trophoblast tissue 
not only from amniotic fluid [33]. However, it should be 
emphasized that all these methods were useful in cases with 
a positive history of GA2 running in the family. In all cases, 
history of death or severe illness of the previous child due 
to confirmed GA2 pointed out targeted prenatal diagnosis 
in the next pregnancy [20, 21, 23–26]. In three cases pre-
natal manifestation was observed in previous pregnancies 
as enlarged hyperechoic or cystic kidneys and elevated 
serum alfa fetoprotein (AFP) level but they were diagnosed 
as GA2 in postmortem examinations. In these three cases 
renal anomalies reoccur in the next pregnancy leading to 
the exact diagnosis [22, 27, 28]. In our study trio analysis was 
performed as it significantly improves the diagnostic yield 
compared with proband-only testing [34]. Consequently, 
we were able to identify two novel pathogenic variants 
of the ETFDH gene and to indicate their parental origin. 
These results allow the establishment of correct diagnosis 
in the affected fetus and calculate genetic risk in the family 
which meets expectations among Polish women regarding 
prenatal diagnosis [35]. Moreover, identification of novel 
variants enriches existing databases of single nucleotide 
polymorphism.

SUMMARY
Inborn errors of metabolism are rare disorders with un-

specific manifestation in prenatal settings. Hyperechoic, 
enlarged kidneys could be one of the clinical features of 
metabolic diseases. After exclusion of chromosomal abnor-
malities, urinary tract obstruction and intrauterine infec-

tions, glutaric acidemia type 2 and number of monogenic 
disorders should be considered. Exome sequencing ap-
proach allows to identify pathogenic variants even without 
earlier knowledge of the precise genetic background. This 
strategy could help in early diagnosis, optimal perinatal care 
and family planning for affected individuals. 
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