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ABSTRACT
Objectives: The aim of the study was to analyze the activity of antioxidant enzymes (glutathione reductase, catalase, 
superoxide dismutase) and malondialdehyde (MDA) levels in a population of men with abnormal semen parameters 
and in a population of men diagnosed with normozoospermia. 

Material and methods: This study was performed using data collected at the Infertility Treatment Clinic ‚Genesis', 
Bydgoszcz, Poland, between 1 January 2011 and 31 December 2017. A total number of 455 men meeting the inclusion 
criteria were selected and divided into the control group (234 men) and the infertility group (221 men). The activities 
of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) were measured using ready-made kits; 
lipid peroxidation intensity was determined by the thiobarbituric acid method. 

Results: No statistically significant differences were found for activity of SOD, GR, CAT between the groups. MDA values 
measured in the serum of patients in the healthy group were higher than in the group with semenological disorders. 

Conclusions: Although our study did not demonstrate the usefulness of the above blood tests, further studies are needed to ex-
plore the potential use of assessing redox parameters to develop new diagnostic and therapeutic approaches for male infertility.

Keywords: male infertility; oxidative stress; reactive oxygen species; superoxide dismutase; catalase; glutathione 
reductase; MDA; antioxidant defense

Ginekologia Polska 2024; 95, 6: 426–433

INTRODUCTION
According to the World Health Organization [1], in-

fertility refers to the biological inability of an individual 
to achieve pregnancy following at least 12 months of un-
protected intercourse [2, 3]. It has been estimated that 
approximately 15% of couples face some form of infertil-
ity and among them, male factor infertility plays a role in 
nearly 30–50% of all infertile couples [4, 5]. Male infertility 

diagnosis is commonly based on standard semen param-
eters analysis [6], according to the WHO guidelines, nev-
ertheless, a large proportion of infertile males does not 
receive a clear diagnosis, considering them as idiopathic 
or unexplained cases [7, 8].

Epidemiological predictions indicate that the number 
of infertile couples will increase. In developed countries, 
the problem of primary infertility is more frequent, while  
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developing countries, more often face the problem of sec-
ondary infertility. The infertility rate is not the same in each 
country, and it is determined by many factors, including 
civilization factors. In developed countries, it ranges be-
tween 10% and 12% [1].

According to forecasts, Poland’s population will shrink 
by more than 10% over the next three decades, and such 
a drastic decline in population will be mainly due to declin-
ing birth rates. Obviously, this is influenced not only by the 
biological ability to reproduce, but also by the desire for 
parenthood or economic considerations. Nevertheless, mak-
ing it possible to satisfy the need for an offspring through 
proper prevention, diagnosis and treatment of infertility 
should be one of the priorities of modern medicine, not only 
for the sake of future parents, but for the entire population. 
The modern model of life promoting the delay of procreative 
plans, fraught with a great deal of stress, as well as increas-
ingly unfavorable environmental conditions, exacerbate 
the problem of infertility, posing a very great challenge to 
reproductive medicine [9].

Diagnosis of the causes of infertility should be carried 
out simultaneously in both partners. Male fertility is a direct 
result of the process of spermatogenesis, which involves the 
continuous production of sperm by the spermatogenic epi-
thelium. It occurs in the spermatogenic tubules of the male 
gonad and lasts about 74 days [10]. It is known that a huge 
role in the regulation of physiological processes, including 
spermatogenesis, is played by health status, i.e., the co-
occurrence of conditions both related to the genitourinary 
system and other systemic dysfunctions. In recent years, the  
results of numerous studies have repeatedly confirmed  
the existence of a close relationship between male infertility 
and their general health status. The occurrence of certain 
conditions may be related to genetic and/or environmental 
factors [3, 11–14].

Oxidative stress
Every healthy organism has complex mechanisms 

whose role is to detoxify reactive oxygen species (ROS). 
An imbalance between ROS and the body’s antioxidant 
mechanisms can result in sperm damage and loss of 
conceptus by the negative effects of ROS on sperm func-
tion and metabolism, mainly in affecting the processes of 
capacitation and the acrosomal reaction. During chronic 
oxidative stress, there is an increase in the amount of oxi-
dized proteins in male gametes, which leads to changes 
in the structure of the membrane proteins of the sperm 
head and vitellum. Excessive exposure to ROS signifi-
cantly reduces male fertility due to damage to sperm 
cell membranes [3].

Due to their high reactivity, oxygen free radicals, pro-
duced in excess, can have a very negative effect on the body. 

The consequence of this process, when antioxidant defense 
fails and physiological concentrations of ROS are exceeded, 
is a condition called “oxidative stress” [15, 16]. Oxidative 
stress is considered a major etiology for male infertility, more 
specifically idiopathic infertility. Large proportion of infertile 
males does not receive a clear diagnosis, considering them 
as idiopathic or unexplained cases [7].

The analysis of semen parameters according to the 
WHO guidelines represents, currently, the gold standard 
for male infertility diagnosis. Several studies showed that 
ROS-induced sperm oxidation can result in sperm qual-
ity alterations, leading to a decrease in sperm fertilizing 
potential [17–19].

The adverse effects of oxidative stress on sperm function 
represent a new direction of research into the mechanisms 
responsible for male infertility [20–22]. Based on the find-
ings presented in the literature, the need to develop new 
diagnostic methods for male infertility was observed. Along 
with the assessment of oxidative stress in a seminal fluid, 
monitoring the redox status of blood could provide a new 
potential and less invasive practice for clinicians to assess 
the ability to conception [8]. The redox parameters studied 
could be useful for developing new therapeutic strategies 
based on antioxidant supplementation to reduce systemic 
oxidative stress in patients with infertility, improving the 
diagnostic process and possible treatment of male infer-
tility and ultimately the success of assisted reproductive 
technology (ART) [8].

Assays for oxidative stress detection may suggest new 
biochemical approaches to improve male infertility diagno-
sis and management, using simple, fast and less expensive 
techniques [17].

The aim of the study was to analyze the activity of 
antioxidant enzymes (glutathione reductase, catalase, su-
peroxide dismutase) and malondialdehyde levels in the 
population of men with abnormal semen parameters and 
in men diagnosed with normozoospermia and evaluating 
their usefulness of these determinations in the diagnosis 
of male infertility.

Atioxidant defense
Both enzymatic and non-enzymatic components of 

antioxidant defense are involved, with non-enzymatic 
mechanisms considered complementary elements, while 
antioxidant enzymes play a major role in the overall process. 
The most important antioxidant enzymes include super-
oxide dismutase (SOD), glutathione reductase (GR), and 
catalase (CAT). These enzymes are interrelated, cooperating 
to directly neutralize free radicals, reactivate non-enzymatic 
components of antioxidant defense, inhibit lipid peroxida-
tion, and repair damaged molecules and destroy those that 
could not be repaired [23].
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Superoxide dismutase (SOD)
Superoxide dismutase is the body’s main defense mech-

anism against the toxic effects of peroxides. It catalyzes the 
breakdown of superoxide anions to hydrogen peroxide 
and molecular oxygen. Mitochondria, whose DNA is highly 
susceptible to free radical attack, must be protected by an 
efficient superoxide dismutase mechanism. Disruption of 
the activity of this enzyme can expose the cell to increased 
attack by ROS, which can damage genetic material, leading 
to mutations [24].

Catalase (CAT)
Catalase is the main line of defense against highly reac-

tive hydrogen peroxide and is involved in its breakdown 
into water and oxygen. The enzyme exhibits CAT activity 
at high concentrations of hydrogen peroxide, causing its 
breakdown. In contrast, at low concentrations of H2O2, CAT 
exhibits peroxidase activity, participating in the oxidation 
of compounds such as methanol, ethanol, formates, nitrites 
and quinones.

Catalase, by converting hydrogen peroxide, does not 
generate additional free radicals, which protects cells from 
other reactive oxygen species. Oxygen from the breakdown 
of H2O2 can be further utilized in other metabolic processes 
[24]. This enzyme, by breaking down hydrogen peroxide, 
reduces the intensity of oxidative stress, and has a compen-
satory effect against oxidative damage.

Catalase, an enzyme that protects cells from the toxic 
effects of hydrogen peroxide, has been implicated in mu-
tagenesis, carcinogenesis, inflammation and protection 
from apoptosis. It is thought that the enzyme’s activity 
may be reduced by prolonged exposure of patients’ cells 
to oxidative stress.

Glutathione reductase (GR)
Glutathione reductase is an enzyme whose role is to 

restore oxidized glutathione (GSSG) to its reduced form 
(glutathione regeneration), using electrons derived  
from NADPH. The reaction catalyzed by reductase proceeds 
in a sequential census or ping-pong method, which is in-
fluenced by the concentration of the oxidized form of glu-
tathione and NADP+. By catalyzing the GSH/GSSG cycle, 
glutathione reductase prevents excessive accumulation of 
reactive oxygen species and the formation of associated 
oxidative damage. This is related to the fact that glutathione 
disulfide - formed in the reaction catalyzed by glutathione 
peroxidase — is a cell-damaging compound (capable of 
inactivating cellular proteins), while it is glutathione in its 
reduced form that shows antioxidant potential and reacts 
with hydrogen peroxide [25].

Malondialdehyde (MDA)
Reactive oxygen species are involved in the free radical 

oxidation of unsaturated fatty acids in lipids, the so-called 
lipid peroxidation [26]. The end products of lipid peroxida-
tion can be low molecular weight, three-carbon malondial-
dehyde (MDA) and other aldehydes and hydroxyaldehydes. 
Malondialdehyde is the most important stable product of 
lipid peroxidation. Malondialdehyde is one of the most 
mutagenic products of lipid peroxidation. It reacts with DNA 
to form premutagenic lesions [27]. Numerous studies show 
that MDA is one of the primary factors informing about the 
ongoing processes of lipid peroxidation, and thus indicating 
the intensification of oxidative stress.

Elevated levels of free radicals intensify lipid peroxi-
dation and increase MDA production. It is believed that 
concentration of malondialdehyde may be an indicator 
of increased oxidative stress and antioxidant status of the 
body [28].

MATERIAL AND METHODS
Research was undertaken following the Guidelines of 

the European Union Council and the current laws in Poland, 
according to the Bioethical Commission of the Collegium 
Medicum of Nicolaus Copernicus University in Torun, Poland. 
Samples were collected under permit KB 674/2010; No. KB 
427/2014 and No. KB 365/2015.

Semen analysis
We conducted semen testing from 2011 to 2017 at the 

NZOZ Medical Center - Infertility Treatment Clinic ‘Genesis’, 
a center accredited by the Polish Ministry of Health as a Medi-
cally Assisted Reproductive Center, Cell and Embryo Bank.

Semen testing was performed on each patient-partici-
pant in the study. Prerequisites included a 2–7.day period of 
sexual abstinence. During semen evaluation, macroscopic 
evaluation was performed, with determination of volume 
(mL) and reaction (pH) of semen, microscopic evaluation, 
with determination of concentration (million/mL), motility 
(type A fast progressive movement (%); type B slow progres-
sive movement (%); type C non-progressive movement (%); 
type D no movement (%); type A + B progressive movement, 
A + B + C total movement) evaluation was performed in 
a Makler chamber and using a light microscope. The mor-
phology (%) of spermatozoa in the semen was also evaluated.

In the semenological analysis, the ejaculate was treated 
as normal according to WHO 2010 criteria. Based on the 
results of the standard semen evaluation, the study partici-
pants were divided into two groups:

	— the control group consisted of 162 patients in whom 
there were no abnormalities in the analyzed semen 
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parameters (semen volume, concentration of sperm in 
semen, motility and morphological structure of sperm) 
— normozoospermia (WHO 2010); 

	— the infertility group consisted of 159 men with se-
men abnormalities applied to oligozoospermia, 
asthenozoospermia, azoospermia, teratozoospermia, 
necrozoospermia, combined oligozoospermia- asthe-
nozoospermia-teratozoospermia OAT II, OAT III, crypto-
zoospermia, polyzoospermia, cryptoteratozoospermia, 
leukospermia or combined disorders. 

Antioxidant enzyme activity 
and lipoperoxidation intensity

In addition to semen, whole blood of about 15 mL and 
blood serum were collected from patients approx. 1.5 mL. To 
obtain the serum, the blood was drawn into “clot” type tubes. 
The serum was obtained by centrifugation at 3500 rpm for 
10 minutes. The serum and semen were separated into 
Eppendorf-type tubes. The material was transported to the 
laboratory of the Department of Ecology and Environmental 
Protection, Collegium Medicum of Nicolaus Copernicus 
University in Torun, Poland. The whole blood was stored 
at -80 deg C, as was serum. Semen, on the other hand, was 
stored in liquid nitrogen.

Determination of antioxidant enzyme activity (SOD, 
CAT, GR), and lipoperoxidation intensity (MDA) in blood 
serum was carried out using ready-to-use kits from Cayman 
Chemicals Co. and Wuhan EIAab Science.

Activity of superoxide dismutase
Serum SOD activity was determined using a standard-

ized Superoxide Dismutase Assay Kit (Cayman Chemical 
Co. Item No. 706002). The analyses were performed on 96-
well plates according to the methodology provided by the 
manufacturer. Two hundred microliters of radical detec-
tor solution (tetrazolium salt solution) were added to the 
samples and 10 μL of standards. The reaction was started 
by adding 20 μL of xanthine oxidase solution to all wells. 
The plate was carefully shaken for several seconds to mix 
the reaction components and incubated on a shaker for 20 
min at room temperature. The absorbance was measured at 
450 nm using a plate reader (Multiskan RC Version 6.0, Lab 
systems). The SOD activity in the samples was calculated 
from the standard curve and expressed in U·mL−1.

Glutathione reductase activity
Glutathione reductase activity in serum was tested using 

Cayman Chemical’s off-the-shelf Glutathione Reductase As-
say Kit. The assay was based on measuring the efficiency of 
NADPH oxidation. The oxidation of NADPH to NADP+ carries 
a decrease in absorbance at 340nm, which is directly propor-
tional to the GR activity in the sample. Assay Buffer was diluted 

with high purity water to obtain a buffer containing 50 mM 
potassium phosphate, pH 7.5, with 1 mM EDTA. Sample Buffer 
after dilution with high-purity water contained 50 mM potas-
sium phosphate, pH 7.5, with 1 mM EDTA and 1 mg* mL-1 BSA. 
In this form, it was used to dilute the following reagents. Glu-
tathione reductase control containing GR isolated from bak-
er’s yeast was diluted with Sample Buffer (10 µL of enzyme + 
+ 990 µL of Sample Buffer) and placed on ice (according to the 
accompanying instructions, 20 µL of diluted enzyme when 
added to the well causes a decrease in absorbance at a rate 
of about 0.04 absorbance units per minute under standard 
reaction conditions). GR NADPH — supplied as a lyophilized 
powder was dissolved in high-purity water. GR GSSG (9.5 mM 
GSSG solution) was ready to use without prior preparation. 
The assay was performed in a 96-well plate, the scheme of 
which was analogous to the GPx assay.

Catalase activity
Serum CAT activity was determined using a standardized 

Catalase Assay Kit (Cayman Chemical Co. Item No. 707002). 
The analyses were performed on 96-well plates according to 
the methodology provided by the manufacturer. Assay Buffer 
(100 μL) and methanol (30 μL) were added to the samples, 
to the standards, and to 20 μL of bovine liver catalase, which 
served as a positive control. The reaction was started by add-
ing 20 μL of hydrogen peroxide to all wells. The plate was 
incubated for 20 min at room temperature. To terminate the 
reaction, 30 μL of potassium hydroxide was added to samples, 
standards, and positive controls, followed by 30 μL of chro-
mogen (Purpald). The plate was then incubated on a shaker 
for 10 min at room temperature. Next, 30 μL of potassium 
periodate was added to all wells. The plate was incubated 
on a shaker for 5 min at room temperature. The absorbance 
at 540 nm was measured using a plate reader (Multiskan RC 
Version 6.0, Lab systems). The CAT activity in the samples was 
calculated from the standard curve and expressed in U·mL−1.

Analysis of malondialdehyde concentration
Malondialdehyde concentration, indicating the inten-

sity of lipid peroxidation processes, was measured by the 
method of Rice-Evans et al. (1991) [29] as modified by At-
maca et al. (2004) [30]. To the analyzed serum and one of the 
controls containing 200 μL of distilled water, the following 
reagents were added: 20 μL of 2% BHT (butylhydroxytoluene) 
in ethanol, 1 mL of 15% TCA (trichloroacetic acid) in 0.25 M  
HCl, and 1 mL of 0.37% TBA (thiobarbituric acid) in  
0.25 M HCl. In the second control sample TBA was replaced 
by 1 mL of distilled water. The samples were vortexed and 
heated in a water bath at 100°C for 10 min. After cooling, the 
samples were centrifuged. The absorbance in the supernatant 
was measured at 535 nm against distilled water as control. 
The obtained absorbances were corrected by subtracting the 
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absorbances of controls with TBA replaced by distilled water. 
Malondialdehyde concentration in the samples was calcu-
lated using the absorbance coefficient (156 mmol−1•cm−1). 
The concentration was expressed in μM.

Statistical analysis
Statistical analyses were performed with The R statisti-

cal package version 4.0.2. Regarding quantitative param-
eters, the results are displayed as minimum and maximum 
values, quartiles (Q1, Q3), medians, arithmetical averages 
and standard deviations. Data were analyzed for normal 
distribution. Those that did not exhibit normal distribution 
were analyzed with non-parametric tests (U-Mann-Whitney). 
Normally distributed data were compared with a Student-t 
test. Correlations were analyzed with Spearman rank cor-
relation tests. The coefficient of significance was set at  
α < 0.05 and statistical significance at p < 0.05 [31].

RESULTS
There were no statistically significant differences be-

tween the control and abnormal spermiogram groups in 
terms of antioxidant enzyme activity (SOD, CAT).

Malondialdehyde values and glutathione reductase 
activity measured in the serum of patients in the healthy 
group were higher than in the group with spermiogram 
disorders (Fig. 1).

DISCUSSION
Reactive oxygen species produces extensive protein 

damage, cytoskeletal modifications and inhibit cellular 
mechanisms. However, on the other hand ROS are funda-
mental mediators of physiological sperm function, such 
as signal transduction mechanisms that influence fertil-
ity. Reactive oxygen species can have positive effects on 

sperm and the concentration functions depending on the 
nature and the concentration of the ROS involved. They are 
necessary in regulating hyperactivation and the ability of 
the spermatozoa to undergo the acrosomal reaction [32].

Impaired sperm activity, function and morphology 
can occur when levels of ROS or other free radicals are 
significantly elevated, while the body’s antioxidant capac-
ity is reduced [33, 34]. Elevated levels of ROS are found 
in 25–80% of infertile men, which is further associated 
with low levels of antioxidants in semen for men without 
fertility disorders [33, 35]. Reactive oxygen species causes 
a decrease in semen parameters by damaging sperm DNA 
or by initiating lipid peroxidation in membrane structures, 
which has a negative impact on sperm motility and the abil-
ity to fertilize oocytes [36]. Sources of ROS are many. These 
include activated leukocytes from inflammatory processes, 
immature spermatogenesis cells with abnormal morphol-
ogy, coexistence of varicocele or cryptorchidism. In addition 
to factors independent of the patient, lifestyle, addictions, 
environmental and occupational exposures, and diet are 
also sources of excessive ROS [34].

Studies over the past two decades provide significant 
evidence to support the concept that excessive production 
of ROS is one of the causes of abnormal semen parameters 
and sperm damage [3, 11–14]. Male germ cells are extremely 
vulnerable to oxidative stress as the sperm membrane is rich 
in unsaturated fatty acids and lacks the capacity for DNA 
repair. Spermatozoa are particularly susceptible to ROS-
induced damage because their plasma membranes contain 
large quantities of polyunsaturated fatty acids (PUFA) and 
their cytoplasm contains low concentrations of the scaveng-
ing enzymes [27].

As spermatozoa has relatively low intracellular antioxi-
dant activity, the enzymatic antioxidants present in seminal 
plasma, meaning SOD, CAT and GR, therefore play a very im-
portant role. In addition, several non-enzymatic antioxidants 
also contained in seminal plasma, such as ascorbic acid, uric 
acid and alpha-tocopherol, play a supporting function [37].

Sperm antioxidant defense is enhanced by MDA, which, 
as a breakdown product formed during lipoperoxidation, 
is one of the primary factors determining the intensity of 
this process by which it determines the severity of oxidative 
stress [38, 39]. The phenomenon of lipid lipoperoxidation 
disrupts the basic parameters of sperm, causing impair-
ment of membrane integrity, motility and overall sperm 
metabolism [40].

Excess production of ROS can trigger the phenomenon 
of lipid peroxidation through non-enzymatic or enzymatic 
mechanisms. Lipoperoxidation products exhibit high bi-
ological activity and are capable of inducing cell death. 
Undoubtedly, the balance between ROS generation and 
elimination is a decisive factor. Therefore, under conditions 

Figure 1. Malondialdehyde (MDA) concentration in the group of healthy 
and infertile patients
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of limited lipoperoxidation, cell survival is promoted (the 
process itself stimulates the production of an “adaptive 
response”, which manifests itself in the mobilization of an-
tioxidant systems). In contrast, under toxic conditions (high 
levels of lipid peroxidation), the processes of apoptosis and 
cell necrosis are promoted [41].

Oxidative stress can be evaluated in different biologi-
cal samples (plasma, serum, follicular/peritoneal/seminal 
fluid), obtaining an accurate picture of redox status. Blood 
and plasma redox status alterations have been reported 
in infertile men, as recently described in the study show-
ing higher blood leukocytes ROS production, increased 
plasma lipid peroxidation (LPO) and reduced plasma total 
antioxidant capacity (TAC) in oligoasthenozoospermic men 
compared to healthy subjects [42]. In line with this, several 
findings also suggest that ROS-mediated sperm oxidation 
may induce cellular dysfunctions, affecting spermatozoa 
concentration, total number and motility [20, 43].

Although MDA levels may not be correlated with sperm 
DNA fragmentation and oxidation, suggesting that some 
fundamental parameters for sperm quality may remain in-
dependent of MDA [44], previous studies have emphasized 
the link between intense lipid peroxidation, elevated MDA 
levels, deteriorating sperm quality and overall reproductive 
potential [38, 39].

In these studies, it was found that higher levels of MDA 
in plasma and seminal fluid of infertile men correlated with 
semen parameters, thus indicating that redox status affects 
procreative capacity [38, 39, 45].

The data obtained in our study shows that serum 
MDA levels in men with normozoospermia were higher 
(22.65 µM) than in those with fertility disorders (10.94 µM, 
p = 0.013); (Tab. 1.). Our results are consistent with those 
of Kasperczyk et al. (2016) [46]. Morales et al. [47] note 
that elevated MDA levels can also be interpreted as a kind 
of adaptive mechanism. In some organisms, especially 
with undisturbed regulation of redox signaling, MDA can 

stimulate regulatory genes or even participate in cellular 
protection under oxidative stress. Therefore, transient in-
creases in MDA may serve as a defensive signaling factor 
that participates in mobilizing antioxidant mechanisms 
to counter ROS. These suggestions led us to consider the 
temporary increases in MDA concentration as a protective 
mechanism rather than as an indicator of damage. This is 
an interpretation that may be valid for the healthy male 
controls analyzed in our study (Tab. 1). In addition, some 
key methodological aspects may determine the usefulness, 
or lack thereof, of the obtained results of MDA concentra-
tions for specific analytical and research questions [47]. In 
the case of continuous exposure to oxidative stress, certain 
factors responsible for it tend to cause an increase in MDA 
concentrations in a dose-dependent manner. In such situ-
ations, the opposite effect can be observed with respect 
to the enzymatic activity of antioxidants, which can be 
significantly reduced [48].

In other published data, increased lipid peroxidation 
positively correlates with impaired spermatogenesis and 
reduced semen parameters and its marker MDA is elevated 
in infertile patients compared to patients without fertility 
disorders [49–51]. In other studies, MDA levels do not dif-
fer between fertile and infertile patients, moreover, it did 
not change under the influence of introducing additional 
antioxidant factors such as zinc supplementation [52]. With 
reference to the literature data, the result in terms of serum 
MDA levels in men with normozoospermia in the presented 
study does not seem controversial.

Shamsi et al. [53] found that blood levels of SOD and 
GSH positively correlated with sperm count and motility, 
while elevated MDA levels were associated with altered 
sperm morphology. Another study proves that plasma TAC 
significantly and positively correlated with both seminal 
fluid TAC and semen parameters [54], indicating that plasma 
redox status reflects the redox status of the seminal fluid 
microenvironment and sperm quality.

Table 1. Malondialdehyde (MDA) concentration and superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities in 
the infertility group (n = 159) and in the control group (n = 162)

Parameter
Control group Infertility group

x SD Min Q1 Me Q3 Max x SD Min Q1 Me Q3 Max p value*

MDA [μm] 22.65 42.5 0.21 2.68 5.21 14.59 242 10.94 30.66 0.21 1.8 2.9 6.2 209 0.0136

CAT activity 
[nmol·min−1·mL−1] 58.98 91 2.46 23.51 40.4 69.22 1011.6 81.82 137.61 0.0 28.18 40.9 100.35 159.9 0.7248

SOD activity 
[U·mL−1] 2.47 2.59 0.0 0.49 1.57 3.89 14.59 8.04 34.03 0.01 0.82 2.6 4.22 227.95 0.0508

GR activity 
[U·mL−1] 26.09 17.6 0.0 14.43 20.94 33.11 89.14 28.48 24.74 1.7 13.41 19.7 38.2 114.61 0.0368

SD — standard deviation; Min — minimum value; Q — quartile; Me — medians; Max — maximum value; *Mann-Whitney U test
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Our study proves that the assay of serum antioxidant 
enzyme activity (SOD, CAT), does not seem to be useful in 
the diagnosis of male infertility. There were no differences 
in the activity of these enzymes between the analyzed 
groups.

Although other authors have reported that the deter-
mination of antioxidant enzyme activity could be used to 
identify patients with oxidative stress and thus those who 
may be eligible for antioxidant treatment [55–57]. Further 
analyses and a comprehensive diagnostic and therapeutic 
consensus are needed.

CONCLUSIONS
It is known that oxidative stress is strongly associated 

with sperm dysfunction and represents a new pathological 
mechanism of male infertility [8, 20–22]. Numerous studies 
on this issue point to the need to develop new methods and 
diagnostic strategies for assessing male fertility. Along with 
assessing oxidative stress in seminal fluid, monitoring the 
redox status of blood could provide a new potential and less 
invasive practice for clinicians to assess sperm quality and 
fertilizing capacity. Although our study did not demonstrate 
the usefulness of the blood tests which were analyzed, 
further studies are needed to explore the potential use of 
assessing redox parameters to develop new diagnostic and 
therapeutic approaches for male infertility.

An interesting aspect of our study is the observed in-
crease in GR in the group of patients with infertility, which 
requires further analysis, as we did not find studies on this 
issue in the available literature.
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