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ABSTRACT
Objectives: The objective of this study was to develop and validate an ovarian tumor ultrasonographic diagnostic model 
based on deep convolutional neural networks (DCNN) and compare its diagnostic performance with that of human experts. 

Material and methods: We collected 486 ultrasound images of 192 women with malignant ovarian tumors and 617 ul-
trasound images of 213 women with benign ovarian tumors, all confirmed by pathological examination. The image 
dataset was split into a training set and a validation set according to a 7:3 ratio. We selected 5 DCNNs to develop our 
model: MobileNet, Xception, Inception, ResNet and DenseNet. We compared the performance of the five models through 
the area under the curve (AUC), sensitivity, specificity, and accuracy. We then randomly selected 200 images from the 
validation set as the test set. We asked three expert radiologists to diagnose the images to compare the performance 
of radiologists and the DCNN model.

Results: In the validation set, AUC of DenseNet was 0.997 while AUC was 0.988 of ResNet, 0.987 of Inception, 0.968 of 
Xception and 0.836 of MobileNet. In the test set, the accuracy was 0.975 with the DenseNet model vs 0.825 (p < 0.0001) 
with the radiologists, and sensitivity was 0.975 vs 0.700 (p < 0.0001), and specificity was 0.975 vs 0.908 (p < 0.001).

Conclusions: DensNet performed better than other DCNNs and expert radiologists in identifying malignant ovarian tumors 
from benign ovarian tumors based on ultrasound images, a finding that needs to be further explored in clinical trials.
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INTRODUCTION
Ovarian cancer is one of the deadliest gynecological ma-

lignancies. According to the Global Cancer Statistics 2020 [1], 

it is estimated to be 313 959 new cases and 207 252 deaths 

of ovarian cancer in 2020 in the world. The global 5-year 

survival is below 45% [2]. Ovarian cancer generally affects 

women over 50. The treatment is based on surgery and 

chemotherapy.

Ultrasound examination is the most appropriate 

first-line diagnostic technique for the preoperative evalu-

ation of women with adnexal lesions. Ovarian cancer is 

usually diagnosed through ultrasound features such as the 

shape of the pelvic mass, the proportion of solid tissue,  

the presence of ascites, the number of papillary projections, 

and blood flow signals [3]. Whether a pelvic mass is benign 

or malignant, an expert radiologist discriminates through 

these features. Radiologists are limited in their abilities, and 

their judgment is subject to the influence of their working 

experience [4]. The accuracy of discriminating a pelvic mass 

through ultrasound by radiologists is approximately 82–92% 

[5]. Therefore, it is necessary to improve the precision of 

ultrasonographic diagnosis of ovarian tumors. 

With the rapid development of artificial intelligence, 

the technique of computer-assisted image diagnosis in 

medicine has made substantial strides in the area of image- 

-recognition [6, 7]. Recent advances in deep convolutional 
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neural networks (DCNN) have shown great promise for ul-

trasound diagnosis of diseases such as thyroid nodules and 

breast nodules [8, 9]. However, studies on ultrasonographic 

diagnosis of ovarian tumors through DCNN are few so far 

[10]. In contrast to typical machine learning algorithms, 

DCNN does not employ features that human experts identi-

fied as input. By taking raw image pixels and the correspond-

ing class labels as inputs, DCNN automatically learns feature 

representations in a generalized manner [11]. 

One of the main challenges of DCNN models is vanishing 

gradients. A practical solution is to increase the connection 

between layers. This problem was overcome in some DCNN 

models such as ResNet [12], Highway Networks [13], and 

Stochastic depth [14]. Although these algorithms have dif-

ferent network structures, they all take advantage of short 

paths to link early and later layers. Therefore, we used the 

concept of DenseNet [15] to design our model architecture. 

A DenseNet network is an improved DCNN model that con-

tinues the idea mentioned above by directly connecting all 

layers to ensure maximum information flow between layers, 

using a shortcut connection to pass input from one block to 

another. Thus, DenseNet may offer great help for diagnosis 

of image-based examinations in clinical work.

Objectives
In this study, we aim to develop a DCNN-based ultra-

sound image analysis model and evaluate its performance 

for the automated diagnosis of ovarian tumors using real- 

-world ultrasound images compared with human radio-

logists.

MATERIAL AND METHODS
Dataset

We retrospectively collected ultrasound images of ova-

rian tumors from the First Affiliated Hospital of Soochow 

University between May 1st, 2017, to June 30th, 2020. Pa-

tients were included based on the following two eligibility 

criteria. The first requirement was that they were at least 

18 years old. Secondly, all patients with benign or malignant 

ovarian tumors underwent a pathological examination.  

The pathological examination reports were provided by the 

pathological department of the First Affiliated Hospital of 

Soochow University. 

If the patients fulfilled the inclusion criteria, ultrasound 

images within 120 days before the surgery were collected. 

The ultrasound imaging was manufactured by GE Healthcare 

system. Image quality control was performed by excluding 

images not containing tumor nidus based on the pathologi-

cal review report, such as the uterus and opposite normal 

ovaries. The images were all in jpg format. As a final step, we 

established our image dataset of 1103 ultrasound images, 

including 486 images of malignant ovarian tumors from  

192 patients and 617 images of benign ovarian tumors 

from 213 patients.

The construction of the DCNN models 
The dataset was split into a training set and a validation 

set at random in a 7:3 ratio. The training set was utilized to 

learn the parameters of the ultrasound images, and the 

validation set was used to estimate the prediction error for 

hyperparameter tuning and model selection. The training 

set consisted of 340 images of malignant ovarian tumors 

and 432 images of benign ovarian tumors. The validation set 

consisted of 146 images of malignant ovarian tumors and  

185 of benign ovarian tumors. Our training dataset was 

augmented with image data to increase training data and 

avoid overfitting artificially [16]. Image augmentation was 

not applied to the validation set. It is reported that after 

adopting the data enhancement method, the accuracy of 

the final recognition results can be improved by 3–4% [17]. 

We used the following methods to effectively enhance the 

ultrasound image data, including rotation ± 20°, horizon-

tal translation 20°, vertical translation 20°, zoom 20%, and 

horizontal flip. The effect of augmentation of specific data 

is shown in Figure S1. 

Afterwards, we selected five different DCNNs to de-

velop our diagnostic models, including Inception [18], 

Mobilenet [19], Resnet, Xception [20], and DenseNet. We 

trained 50 rounds on the training set and evaluated the 

DCNN models using the training set. The output of the last 

layer was shown as the predicted probability of malignancy.

All experiments were conducted on a device with a Win-

dows 10 system. The hardware capabilities included NVIDIA 

RTX 3080 GPU (10 GB memory), CPU AMD 5600X, and 32 GB 

RAM. In the experiment process, the size of all the images 

was set at 299 × 299 mm. We set the batch size to 16 due to 

GPU memory limitations. All programs were implemented by 

TensorFlow and Keras. The optimizer was Stochastic Gradient 

Descent, and the initial learning rate was 0.001. The momentum 

was 0.9, and the weight decay was 0.0001. We set the epoch at 

50. Moreover, the warm-up was employed during the training 

process. A stable distribution could aid in maintaining the deep 

stability of the model, which could help to slow down the early 

overfitting of the mini-batch at the start of the model. 

Comparison with radiologists
Futhermore, DenseNet showed the best performance 

among the five DCNN models and was used to compare 

whether the DCNN model has advantages over human ra-

diologists in recognizing malignant ovarian tumors. Then, 

we randomly selected 200 images from the validation set 

as the test set. Three expert radiologists were invited to 

analyze the 200 images and determine whether they were 

malignant. The performance of human radiologists was 
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Statistical analysis

DenseNet Radiologists

PPV is the fraction of malignancies verified by pathological 

examination in malignancies diagnosed by DCNN models 

or radiologists. NPV is the fraction of benignities verified 

by pathological examination in benignities diagnosed by 

DCNN models or radiologists. We calculated 95% confi-

dence intervals (CIs) for sensitivity, specificity, accuracy, 

PPV, and NPV with the Clopper–Pearson method [21]. We 

also calculated kappa values and F1 scores. Kappa value 

measures the agreement between the prediction of one 

diagnostic method and the pathological reports. F1 score 

was calculated as the harmonic mean of sensitivity and PPV, 

which measures the accuracy of one diagnostic method 

against the pathological report.

We used the radiologists’ average sensitivity, specificity, 

and accuracy when comparing the performance with the 

DenseNet model. A binomial test was applied to evaluate 

the difference in sensitivity, specificity, and accuracy be-

tween the DenseNet model and the radiologists. A p value 

less than 0.05 was considered statistically significant. The 

inter-radiologist agreement rate and Fleiss’ kappa value 

[22] were also calculated. The figure plotting and statistical 

analyses were done with GraphPad Prism (version 8.0) and 

R software (version 4.0.3). 

The flowchart depicting the process of our study is 

shown in Figure 1.

then compared with the DenseNet model on the test set. 

All radiologists had working experience more than six years 

and were required to complete the task within two hours 

independently. 

Statistical analysis 
The predictions of DCNN models and radiologists were 

compared with the pathological reports, considered the 

diagnostic gold standard. We applied the receiver operat-

ing characteristic (ROC) curve to compare the diagnostic 

abilities of different DCNN models in discriminating ma-

lignant ovarian tumors from benign ones. The ROC curve 

was drawn by plotting the true positive rate (sensitivity) 

against the false positive rate (1-specificity) by varying the  

predicted probability threshold, and the area under  

the curve (AUC) was calculated. We also calculated the 

accuracy, sensitivity, specificity, positive predicted values 

(PPV) and negative predictive values (NPV) to assess the 

diagnostic abilities of different DCNN models and radiolo-

gists. Sensitivity is the fraction of recognizing malignancies 

in the malignant data verified by pathological examination. 

Specificity is the fraction of recognizing benignities in be-

nign data verified by pathological examination. Accuracy 

is the fraction of recognizing malignant/benign data in ma-

lignant/benign data verified by pathological examination. 

Figure 1. The flowchart of the study; FAHSU — the First Affiliated Hospital of Soochow University
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RESULTS
The baseline characteristics of the training set and the 

validation set are shown in Table 1. The median age of partic-

ipants showed no apparent differences between the training 

set and the validation set, while the median age was higher 

in the malignant group than in the benign group [55 years 

(IQR 49–64) vs 35 years (30–45) in training set; 56 years (IQR 

49–66) vs 33 years (28–44) in the validation set]. Since malig-

nant ovarian tumors usually occur in older women, the pro-

portion of participants over 45 was 86.9% in the malignant 

group, while the proportion was only 24.8% in the benign 

group in the training set. The age of onset was similar in the 

validation set. There were no significant differences between 

the training and validation sets regarding the histology of 

malignant ovarian tumors. Most of the participants were at 

stage III or IV, according to the International Federation of 

Gynecology and Obstetrics (FIGO).

The performance of different DCNN models on the vali-

dation set after 50 rounds of training is shown in Table 2, 

and the corresponding ROC curves are shown in Figure 2A. 

As the ROC curves show, the DenseNet model achieved 

the best performance in identifying benign malignant ova-

rian tumors in the validation set, with AUC of 0.997 (95% 

CI 0.995–1.000). AUC were 0.988 (0.980–0.997) of ResNet, 

0,987 (0.978–0.996) of Inception, 0.968 (0.952–0.984) of 

Xception and 0.836 (0.792–0.880) of MobileNet. Moreo-

ver, the DenseNet model achieved the highest accuracy, 

sensitivity, specificity, PPV, and NPV on the validation 

Table 1. Baseline characteristics of the study. Data are n [%] or median (IQR)

Training set (n = 282) Validation set (n = 123)

Malignant group Benign group Malignant group Benign group

Patients 137 145 55 68

Images 340 432 146 185

Age [years] 55 (49–64) 35 (30–45) 56 (49–66) 33 (28–44)

≤ 45 years 18 (13.1%) 109 (75.2%) 10 (18.2%) 52 (76.5%)

> 45 years 119 (86.9%) 36 (24.8%) 45 (81.8%) 16 (23.5%)

Histology

Serous 95 (69.3%) NA 46 (83.6%) NA

Mucinous 9 (6.6%) NA 3 (5.5%) NA

Endometrioid 13 (9.5%) NA 1 (1.8%) NA

Clear cell 13 (9.5%) NA 2 (3.6%) NA

Others 7 (5.1%) NA 3 (5.5%) NA

FIGO

Stage I 32 (23.4%) NA 8 (14.5%) NA

Stage II 16 (11.7%) NA 9 (16.4%) NA

Stage III 66 (48.2%) NA 23 (41.8%) NA

Stage IV 23 (16.8%) NA 15 (27.3%) NA

FIGO — International Federation of Gynecology and Obstetrics; NA — not applicable

Table 2. Performance of different different deep convolutional neural network (DCNN) models, assessed on the validation set. Data are n (95% CI) 

MobileNet Xception Inception ResNet DenseNet

Sensitivity 0.747 (0.668–0.815) 0.863 (0.796–0.914) 0.973 (0.931–0.991) 0.945 (0.895–0.976) 0.952 (0.904–0.981)

Specificity 0.795 (0.729–0.850) 0.941 (0.896–0.970) 0.849 (0.789–0.897) 0.957 (0.917–0.981) 0.973 (0.938–0.991)

Accuracy 0.773 (0.724–0.817) 0.906 (0.870–0.935) 0.903 (0.866–0.933) 0.952 (0.923–0.972) 0.964 (0.938–0.981)

Positive predictive 
value

0.741 (0.663–0.810) 0.920 (0.861–0.959) 0.835 (0.771–0.888) 0.945 (0.895–0.976) 0.965 (0.921–0.989)

Negative predictive 
value

0.799 (0.734–0.854) 0.897 (0.845–0.936) 0.975 (0.938–0.993) 0.957 (0.917–0.981) 0.963 (0.924–0.985)

Kappa 0.541 0.809 0.807 0.902 0.926

F1 0.744 0.890 0.899 0.945 0.959

CI — confidence interval; DCNN — deep convolutional neural networks
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set. For the DenseNet model, accuracy was 0.964 (0.938– 

–0.981), sensitivity was 0.952 (0.904–0.981), specificity was 

0.973 (0.938–0.991), PPV was 0.965 (0.921–0.989), and NPV 

was 0.963 (0.924–0.985). For the ResNet model, accuracy was  

0.952 (0.923–0.972), sensitivity was 0.945 (0.895–0.976), 

specificity was 0.957 (0.917–0.981), PPV was 0.945 (0.895– 

–0.976), and NPV was 0.957 (0.917–0.981). For the Incep-

tion model, accuracy was 0.903 (0.866–0.933), sensitivity 

was 0.973 (0.931–0.991), specificity was 0.849 (0.789-0.897), 

PPV was 0.835 (0.771–0.888), and NPV was 0.975 (0.938– 

–0.993). For the Xception model, accuracy was 0.906 (0.870– 

–0.935), sensitivity was 0.863 (0.796–0.914), specificity was 

0.941 (0.896–0.970), PPV was 0.920 (0.861–0.959), and NPV was  

0.897 (0.845–0.936). For the MobileNet model, accuracy 

was 0.773 (0.724–0.817), sensitivity was 0.747 (0.668–0.815), 

specificity was 0.795 (0.729–0.850), PPV was 0.741 (0.663– 

–0.810), and NPV was 0.799 (0.734–0.854). Furthermore, the 

DenseNet model also had a higher kappa coefficient and 

F1 score than other DCNN models. From the above results, 

the DenseNet model has the best diagnostic capability 

compared to other DCNN models.

The performance of DenseNet versus the expert radiolo-

gists in the test set is shown in Figure 2B and Table 3. In the test 

set, the AUC value of the DenseNet model was 0.999 (95% CI 

0.998–1.000). Among the radiologists, accuracy ranged from 

0.810 (0.749–0.862) to 0.855 (0.798–0.901), sensitivity ranged 

from 0.625 (0.510–0.731) to 0.763 (0.654–0.851), specificity 

ranged from 0.875 (0.802–0.928) to 0.933 (0.873–0.971), 

PPV ranged from 0.792 (0.680–0.878) to 0.862 (0.746–0.939), 

and NPV ranged from 0.789 (0.712–0.853) to 0.853 (0.780– 

–0.909). The inter radiologist agreement rate was 0.735 (95% 

CI 0.668–0.795; Fleiss’ kappa 0.667). Compared with the ex-

pert radiologists, the DenseNet model achieved higher per-

formance in discriminating malignant ovarian tumors from 

benign ones. The accuracy was 0.975 (0.943–0.992) with  

the DenseNet model vs 0.825 (0.765–0.875; p < 0.0001) 

with the radiologists, and sensitivity was 0.975 (0.913– 

–0.997) vs 0.700 (0.587–0.797; p < 0.0001), and specificity 

was 0.975 (0.929–0.995) vs 0.908 (0.842–0.953; p < 0.001). 

Furthermore, the DenseNet model also had higher PPV, 

NPV, kappa coefficient, and F1 score compared with the 

performance of the radiologists.

The ultrasound images misdiagnosed by DenseNet are 

shown in Figure S2. The confusion matrices reporting the 

number of true positive, false positive, false negative and 

true negative results achieved by Inception, MobileNet, 

Figure 2. Performance of different deep convolutional neural network (DCNN) models and the radiologists in discriminating malignant ovarian tumors 
from benign ones; A. The receiver operating characteristic (ROC) curves for the performance of different DCNN models in the validation set; B. ROC 
for the performance of the DenseNet model versus 3 radiologists in the test set; AUC — area under the curve

A B

Table 3. Performance of the DenseNet model versus radiologists, assessed on the test set

Radiologist 1 Radiologist 2 Radiologist 3 Radiologist’ mean DenseNet p value

Sensitivity 0.625 (0.510–0.731) 0.763 (0.654–0.851) 0.713 (0.600-0.808) 0.700 (0.587–0.797) 0.975 (0.913–0.997) < 0.0001

Specificity 0.933 (0.873–0.971) 0.917 (0.852–0.959) 0.875 (0.802-0.928) 0.908 (0.842–0.953) 0.975 (0.929–0.995) < 0.001

Accuracy 0.810 (0.749–0.862) 0.855 (0.798–0.901) 0.810 (0.749-0.862) 0.825 (0.765–0.875) 0.975 (0.943–0.992) < 0.0001

Positive predictive 
value

0.862 (0.746–0.939) 0.859 (0.756–0.930) 0.792 (0.680-0.878) 0.836 (0.725–0.915) 0.963 (0.896–0.992)

Negative 
predictive value

0.789 (0.712–0.853) 0.853 (0.780–0.909) 0.820 (0.743-0.883) 0.820 (0.744–0.881) 0.983 (0.941–0.998)

Kappa 0.585 0.692 0.597 0.625 0.948

F1 0.725 0.808 0.750 0.762 0.969
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ResNet, Xception, DenseNet, and the radiologists are shown 

in Table S1 and Table S2.

DISCUSSION
In this study, an automatic DCNN model was developed 

and validated to discriminate malignant from benign tu-

mors of the ovary on ultrasound images. According to the 

above results, DenseNet performed better than other DCNN 

models in the validation set with respect to AUC, accuracy, 

sensitivity, and specificity. Consequently, DenseNet was 

selected for the comparison with expert radiologists. The 

diagnostic capability of the DenseNet model significantly 

exceeded the average level of radiologists. 

At present, studies on the application of deep lear ning 

in ovarian cancer are limited. The application fields include 

diagnosis, pathological classification and prognostic predic-

tion. Meanwhile, magnetic resonance imaging and ultra-

sonography essentially take equal share of studies focusing 

on image recognition of ovarian tumor through deep learn-

ing. By February 2023, only 6 articles [23–28] on ultrasono-

graphic diagnosis of ovarian tumor through deep learning 

were retrieved. A retrospective single-center study in South 

Korea [23] constructed a CNN-CAE model to make diagnoses 

through ultrasound images of ova rian tumors. The model 

consisted of two parts. The first part could automatically 

remove interfering information such as characters and rul-

ers on ultrasound images through the CAE program, and 

the second part was the DenseNet model, which was used 

for image diagnosis. The accuracy of CNN-CAE model was 

0.972 in distinguishing ovarian tumors from normal ovar-

ian tissues, and the accuracy was 0.901 in recognizing ma-

lignant ovarian tumors. Another study from Taiwan, China 

[24] tested the performances of ten common DCNN models, 

and three of them with the highest accuracy (ResNet-18, 

ResNet-50 and Xception) were selected to construct 

an assembled diagnostic model. The average accuracy of  

the assembled model reached 0.922. However, none of the 

above deep learning models have been compared with 

the diagnostic performance of expert radiologists. Chen 

et al. [25] included a number of ultrasound images from 

422 patients with ovarian tumors and trained two deep 

learning models based on ResNet, DLdecidion and DLfeature. 

Then, the two models were compared with radiologists and 

the Ovarian-Adnexal Reporting and Data System (O-RADS). 

However, DLdecidion and DLfeature did not show superior diag-

nostic performances than radiologists and O-RADS. Radiolo-

gists from Shanghai represents the highest diagnostic level 

in China to a certain extent. 

Another multicenter retrospective study [26] in-

volving 106,400 patients showed that the AUC of the 

DenseNet-121 model reached 0.911 in the internal vali-

dation set, as well as 0.870 and 0.831 in the two external 

validation sets. With the assistance of the DCNN model, the 

average diagnostic accuracy of radiologists was improved 

from 0.783 to 0.876, revealing the great potential of DCNN 

model in the assistance of image diagnosis.

Since ultrasound examination is the most crucial as-

sistant examination in the diagnosis of ovarian lesions, the 

accurate recognition of ovarian malignant tumors is dis-

pensable. However, the discrimination of ovarian tumors is 

entirely up to radiologists, leading to subjective mistakes in 

accurate recognition and consistent interpretation of ova-

rian tumors by radiologists, as shown by the inter-radiologist 

agreement rate in the test set. Nevertheless, DenseNet is 

highly robust and can significantly avoid this defect since it 

learns the feature representations without subjectivity [29]. 

Thus, diagnostic consistency and reproducibility could be 

maintained by the DenseNet model effectively. On the one 

hand, fresh radiologists, without much experience, may be 

able to improve the accuracy of their diagnoses using the 

DenseNet model [27]. On the other hand, two radiologists 

are required to perform the ultrasonographic diagnosis 

during clinical work, one with less experience assessing 

the images to reach a primary diagnosis, and the other 

with more experience responsible for checking the primary 

diagnosis and offering the conclusion. The DenseNet model 

may relieve labor requirement, which may offer great help 

to remote areas in the lack of medical resources. 

Furthermore, the DenseNet model has great applica-

tion potential. Firstly, the DenseNet model works well for 

other diseases in addition to ovarian tumors, as mentioned 

above. Moreover, it could be applied not only in ultrasound 

examination but also in computerized tomography (CT), 

magnetic resonance imaging, retinal fundus photographs 

and other examinations requiring image generation [30, 31].  

Finally, because the DenseNet model report is instanta-

neous, the diagnosis model may be integrated into the 

ultrasound workstations, creating a real-time diagnosis of 

dynamic images. 

However, our study has some limitations. Firstly, we did 

not set up external validation sets. Secondly, we excluded 

patients with borderline ovarian tumors because it may lead 

to confusion of features between samples. And the sample 

size of patients with borderline ovarian tumors is too small 

for DCNN to obtain enough effective features to ensure the 

accuracy of the DenseNet model. Lastly, the three radiolo-

gists were asked to make their judgments through only one 

single ultrasound image in our study. However, in the real 

world, radiologists usually make a comprehensive judgment 

by referring to more than one image. Not only that, but the 

blood flow signals also help them make diagnoses. There-

fore, the diagnostic accuracy of human radiologists based 

on multi-modality data would likely be higher than the 

performance of DCNN.
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CONCLUSIONS
To conclude, the Densnet model is valuable despite its 

limitations. In future, we plan to include more ultrasound 

images from external medical centers. We will also make ef-

forts to refine our diagnostic model of ovarian tumors. And 

we hope our study will make a step to improve the accuracy 

of the diagnoses of ovarian tumors and to help the realiza-

tion of AI-assisted ultrasonographic diagnoses in clinical 

work, which could bring benefit to both the patients and 

the radiologists.

Article information and declarations

Informed consent statement

Informed consent from patients with ovarian tumors was 

waived as the study design was based on a retrospective 

review of medical records and ultrasound images.

Ethics statement

This study was approved by the ethical committee of the 

First Affiliated Hospital of Soochow University in accor-

dance with the principles of the Declaration of Helsinki 

[No:(2023)033, 2023/01/31]. 

Funding 

This work was supported by the National Natural Scien-

ce Foundation of China (No. 82172609, No. 82202898),  

the Jiangsu Province Sci-Tech Plan Special Fundation  

(No. BE2022729), the Foundation of Jiangsu Province Engine- 

ering Research Center of Precision Diagnostics and Thera-

peutics Development (No. SDGC2242).

Acknowledgements 

All listed authors have made essential contributions to the 

work. Min Xi collected the data, performed the data analysis 

and drafted the original manuscript. Jun Qian and Chaomei 

Chen helped collect the data. Runan Zheng wrote DCNN 

program. Xinxian Gu and Mingyue Wang helped filtrate the 

ultrasound images and judge on the test set. Jinhua Zhou 

and Xiu Shi supervised the project design and reviewed  

the manuscript. All authors have read and approved the 

final manuscript for publication. 

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

Figure S1, S2, Table S1, S2.

REFERENCES
1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020:  

GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 

Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–249, doi: 
10.3322/caac.21660, indexed in Pubmed: 33538338.

2. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best 
Pract Res Clin Obstet Gynaecol. 2017; 41: 3–14, doi: 10.1016/j.bpob-
gyn.2016.08.006, indexed in Pubmed: 27743768.

3. Froyman W, Timmerman D. Methods of assessing ovarian masses: inter-
national ovarian tumor analysis approach. Obstet Gynecol Clin North 
Am. 2019; 46(4): 625–641, doi: 10.1016/j.ogc.2019.07.003, indexed in 
Pubmed: 31677746.

4. Van Holsbeke C, Daemen A, Yazbek J, et al. Ultrasound experience substan-
tially impacts on diagnostic performance and confidence when adnexal 
masses are classified using pattern recognition. Gynecol Obstet Invest. 2010; 
69(3): 160–168, doi: 10.1159/000265012, indexed in Pubmed: 20016188.

5. Timmerman D, Schwärzler P, Collins WP, et al. Subjective assessment of 
adnexal masses with the use of ultrasonography: an analysis of inter-
observer variability and experience. Ultrasound Obstet Gynecol. 1999; 
13(1): 11–16, doi: 10.1046/j.1469-0705.1999.13010011.x, indexed in 
Pubmed: 10201081.

6. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer ima-
ging: Clinical challenges and applications. CA Cancer J Clin. 2019; 69(2): 
127–157, doi: 10.3322/caac.21552, indexed in Pubmed: 30720861.

7. Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radio-
logy. Nat Rev Cancer. 2018; 18(8): 500–510, doi: 10.1038/s41568-018-
0016-5, indexed in Pubmed: 29777175.

8. Li X, Zhang S, Zhang Q, et al. Diagnosis of thyroid cancer using deep con-
volutional neural network models applied to sonographic images: a ret-
rospective, multicohort, diagnostic study. Lancet Oncol. 2019; 20(2): 193– 
–201, doi: 10.1016/S1470-2045(18)30762-9, indexed in Pubmed: 30583848.

9. Li J, Bu Y, Lu S, et al. Development of a deep learning-based model for 
diagnosing breast nodules with ultrasound. J Ultrasound Med. 2021; 
40(3): 513–520, doi: 10.1002/jum.15427, indexed in Pubmed: 32770574.

10. Xu HL, Gong TT, Liu FH, et al. Artificial intelligence performance in 
image-based ovarian cancer identification: A systematic review and 
meta-analysis. EClinicalMedicine. 2022; 53: 101662, doi: 10.1016/j.
eclinm.2022.101662, indexed in Pubmed: 36147628.

11. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553): 
436–444, doi: 10.1038/nature14539, indexed in Pubmed: 26017442.

12. He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recog-
nition. In Proceedings of the Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016.

13. Rupesh KS, Klaus G,Jürgen S. Highway Networks. In Proceedings of 
the International Conference on Machine Learning. Lille, France, 2015.

14. Huang G, Sun Yu, Liu Z, et al. Deep networks with stochastic depth. 
Computer Vision – ECCV 2016. 2016: 646–661, doi: 10.1007/978-3-319-
46493-0_39.

15. Huang G, Liu Z, Van ML, et al. Densely Connected Convolutional Net-
works. In Proceedings of the Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017.

16. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification 
of skin cancer with deep neural networks. Nature. 2017; 542(7639): 
115–118, doi: 10.1038/nature21056, indexed in Pubmed: 28117445.

17. Forrest I, Matt M, Sergey K, et al. DenseNet: implementing efficient Con-
vNet descriptor pyramids. Computer Science. 2014.

18. Szegedy C, Vanhoucke V, Iofe S, et al. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition. Las Ve-
gas, NV, USA, 2016.

19. Howard AG, Zhu M, Chen B, et al. MobileNets: Efficient Convolutional 
Neural Networks for Mobile Vision Applications. arXiv 2017.

20. Chollet F. Xception: Deep learning with depthwise separa-ble con-
volutions. In Proceedings of the Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition. Seattle, WA, USA, 2017.

21. CLOPPER CJ, PEARSON ES. The use of confidence or fiducial limits il-
lustrated in the case of the binomial. Biometrika. 1934; 26(4): 404–413, 
doi: 10.1093/biomet/26.4.404.

22. Fleiss JL. Measuring nominal scale agreement among many raters. Psy-
chological Bulletin. 1971; 76(5): 378–382, doi: 10.1037/h0031619.

23. Jung Y, Kim T, Han MR, et al. Ovarian tumor diagnosis using deep con-
volutional neural networks and a denoising convolutional autoencoder. 
Sci Rep. 2022; 12(1): 17024, doi: 10.1038/s41598-022-20653-2, indexed 
in Pubmed: 36220853.

24. Hsu ST, Su YJ, Hung CH, et al. Automatic ovarian tumors recogni-
tion system based on ensemble convolutional neural network with 
ultrasound imaging. BMC Med Inform Decis Mak. 2022; 22(1): 298, 
doi: 10.1186/s12911-022-02047-6, indexed in Pubmed: 36397100.

http://dx.doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006
http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006
https://www.ncbi.nlm.nih.gov/pubmed/27743768
http://dx.doi.org/10.1016/j.ogc.2019.07.003
https://www.ncbi.nlm.nih.gov/pubmed/31677746
http://dx.doi.org/10.1159/000265012
https://www.ncbi.nlm.nih.gov/pubmed/20016188
http://dx.doi.org/10.1046/j.1469-0705.1999.13010011.x
https://www.ncbi.nlm.nih.gov/pubmed/10201081
http://dx.doi.org/10.3322/caac.21552
https://www.ncbi.nlm.nih.gov/pubmed/30720861
http://dx.doi.org/10.1038/s41568-018-0016-5
http://dx.doi.org/10.1038/s41568-018-0016-5
https://www.ncbi.nlm.nih.gov/pubmed/29777175
http://dx.doi.org/10.1016/S1470-2045(18)30762-9
https://www.ncbi.nlm.nih.gov/pubmed/30583848
http://dx.doi.org/10.1002/jum.15427
https://www.ncbi.nlm.nih.gov/pubmed/32770574
http://dx.doi.org/10.1016/j.eclinm.2022.101662
http://dx.doi.org/10.1016/j.eclinm.2022.101662
https://www.ncbi.nlm.nih.gov/pubmed/36147628
http://dx.doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1007/978-3-319-46493-0_39
http://dx.doi.org/10.1007/978-3-319-46493-0_39
http://dx.doi.org/10.1038/nature21056
https://www.ncbi.nlm.nih.gov/pubmed/28117445
http://dx.doi.org/10.1093/biomet/26.4.404
http://dx.doi.org/10.1037/h0031619
http://dx.doi.org/10.1038/s41598-022-20653-2
https://www.ncbi.nlm.nih.gov/pubmed/36220853
http://dx.doi.org/10.1186/s12911-022-02047-6
https://www.ncbi.nlm.nih.gov/pubmed/36397100


188

Ginekologia Polska 2024, vol. 95, no. 3

www. journals.viamedica.pl/ginekologia_polska

25. Chen H, Yang BW, Qian Le, et al. Deep learning prediction of ovar-
ian malignancy at US compared with O-RADS and expert assessment. 
Radiology. 2022; 304(1): 106–113, doi: 10.1148/radiol.211367, indexed 
in Pubmed: 35412367.

26. Gao Y, Zeng S, Xu X, et al. Deep learning-enabled pelvic ultrasound 
images for accurate diagnosis of ovarian cancer in China: a retrospec-
tive, multicentre, diagnostic study. Lancet Digit Health. 2022; 4(3): 
e179–e187, doi: 10.1016/S2589-7500(21)00278-8, indexed in Pub-
med: 35216752.

27. Christiansen F, Epstein EL, Smedberg E, et al. Ultrasound image analy-
sis using deep neural networks for discriminating between benign 
and malignant ovarian tumors: comparison with expert subjec-
tive assessment. Ultrasound Obstet Gynecol. 2021; 57(1): 155–163, 
doi: 10.1002/uog.23530, indexed in Pubmed: 33142359.

28. Wang H, Liu C, Zhao Z, et al. Application of deep convolutional neural 
networks for discriminating benign, borderline, and malignant serous 
ovarian tumors from ultrasound images. Front Oncol. 2021; 11: 770683, 
doi: 10.3389/fonc.2021.770683, indexed in Pubmed: 34988015.

29. Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural 
networks. Pattern Recognition. 2018; 77: 354–377, doi: 10.1016/j.pat-
cog.2017.10.013.

30. Akazawa M, Hashimoto K. Artificial intelligence in gynecologic cancers: 
Current status and future challenges — A systematic review. Artif Intell 
Med. 2021; 120: 102164, doi: 10.1016/j.artmed.2021.102164, indexed 
in Pubmed: 34629152.

31. Guo C, Yu M, Li J. Prediction of different eye diseases based on fun-
dus photography via deep transfer learning. J Clin Med. 2021; 10(23), 
doi: 10.3390/jcm10235481, indexed in Pubmed: 34884192.

Figure S1. Data augmentation effect; A. Original image; B. Rotate; C. Horizontal translation; D. Vertical translation; E. Zoom; F. Horizontal flip
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Figure S2. Images misdiagnosed by the DenseNet Model; A, B. Malignant images classified as be-nign; C, D. Benign images classified as malignant

Table S1. Confusion matrices of different different deep convolutional neural network (DCNN) models on the validation set

MobileNet Xception Inception

Truth Truth Truth

Prediction Malignancy Benign Malignancy Benign Malignancy Benign

Malignancy 109 38 126 11 142 28

Benign 37 147 20 174 4 157

ResNet DenseNet

Truth Truth

Prediction Malignancy Benign Malignancy Benign

Malignancy 138 8 139 5

Benign 8 177 7 180

Table S2. Confusion matrices of radiologists and DenseNet on the test set

Radiologist 1 Radiologist 2 Radiologist 3

Truth Truth Truth

Prediction Malignancy Benign Malignancy Benign Malignancy Benign

Malignancy 50 8 61 10 57 15

Benign 30 112 19 110 23 105

DenseNet

Truth

Prediction Malignancy Benign

Malignancy 78 3

Benign 2 117

A B C D
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