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ABSTRACT
Objectives: We focused our study on examining the genotype and allele frequency of IL-6 (rs1800795), TNF-α (rs1800629) 
and IL-10 (rs1800872) single nucleotide polymorphisms (SNP) on preeclampsia (PE) diagnosed Mexican pregnant women. 

Material and methods: A case-control study was designed including 86 preeclampsia patients and 100 normotensives 
pregnancies from Women’s Hospital of Culiacan, Mexico. Genotyping of IL-6, TNF-α and IL-10 was performed using 
TaqMan SNP Genotyping. 

Results: Not significant association was found between development of PE and genotypic (p > 0.05) and allelic  
(p > 0.05) frequencies of IL-6, TNF-α and IL-10 SNPs. Genotype distributions of IL-6 (p = 0.599), TNF-α (p = 0.721) and IL-10  
(p = 0.761) polymorphisms in the two groups were in agreement with Hardy–Weinberg equilibrium. 

Conclusions: According to the findings, the IL-6, TNF-α and IL-10 SNPs are not exponents of susceptibility to developing PE.
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INTRODUCTION
Preeclampsia (PE) is a syndrome that affects women 

during pregnancy and delivery by increasing arterial 

pressure and, in some cases, multiorgan affectations. 

Daily, this complication is responsible for the death of ap-

proximately 830 women worldwide, [1] with 75% of ma-

ternal mortality being related to preeclampsia (PE). This 

syndrome affects between 2 and 8% of pregnancies and 

characterizes by a new-onset hypertension (> 140/90 

mmHg) in the second half of pregnancy, coexisting with 

either proteinuria (> 300 mg/24 h) or multi-organ (kid-

ney and liver failure) dysfunctions, neurological compli-

cations, thrombocytopenia and/or hemolysis [2]. For the 

newborn, PE has been associated with intrauterine growth 

restriction, neonatal hard breading syndrome, hypoxic- 

-ischemic encephalopathy, bronchopulmonary dysplasia, 

and other complications [3]. 

The etiology of PE is still unknown. Predisposition to PE 

is likely multifactorial and polygenic. Preeclampsia had been 

previously associated with dysregulation of several gene and 

biological pathways in the basis of inflammation and remod-

eling activities, such as regulation of actin cytoskeleton [4].  

Moreover, there are several studies that investigated the role 

of mutated genes, such as AGT, ACE, AGTR1, AGTR2, TNF,  

https://orcid.org/0000-0003-1748-0760
https://orcid.org/0000-0002-5240-0802
https://orcid.org/0000-0003-0223-4823
https://orcid.org/0000-0001-7500-7571
https://orcid.org/0000-0002-6145-1134
https://orcid.org/0000-0002-5344-7477
https://orcid.org/0000-0002-3566-7505
https://orcid.org/0000-0003-2646-106X


109

Carlos Ernesto Mora et al., Cytokine polymorphisms in preeclampsia

www. journals.viamedica.pl/ginekologia_polska

that exert implications in PE pathological processes, such 

as coagulation, vascular resistance, and metabolism, as well 

as inflammatory processes [5–7], of which 30–35% are at-

tributed to maternal genotype, 20% fetal, 13% to the couple, 

and the rest to other effects [8]. 

It is believed that PE results from defective spiral artery 

remodeling, which leads to an imbalance between anti- and 

pro-angiogenic factors, resulting in a hypo-perfused pla-

centa and the release of placental-derived factors causing 

maternal widespread endothelial dysfunction and organic 

failure. The main cause of the abnormal placentation remains 

unclear, but genetic, environmental, and immunological 

factors have been studied [9]. For instance, there is evidence 

supporting that both innate and adaptive immune responses 

participate in the pathogenesis of PE, suggesting that Th1 im-

munity is responsible for poor placentation and exacerbated 

inflammatory response and endothelial dysfunction seen 

in PE [10]. Preeclampsia has been associated with chronic 

immune activation that leads to an increased production 

of inflammatory cytokines by pro-inflammatory T cells, and 

a decrease in regulatory and anti-inflammatory cytokines, 

which further promotes an inflammatory state during PE [11].

Th1/Th2 cytokine balance is important to maintain the 

success of normal pregnancy. In normal pregnancy, the pro-

duction of Th1 cytokine is inhibited, and their overexpression 

predisposes to PE development. In this regard, interleukin-6 

(IL-6) is a Th2, multifunctional pleiotropic pro-inflammatory 

cytokine and plays a central role in the regulation of immune 

responses [12]. IL-6 represents one of the main mediators 

of the acute phase, stimulates T lymphocytes, induces the 

production of C reactive protein, and regulates the produc-

tion of human chorionic gonadotropin. It also maintains the 

pregnancy through an immunosuppressive effect, although 

its expression is elevated during delivery. IL-6 plays an im-

portant role in trophoblastic proliferation, invasion and dif-

ferentiation, and increased levels of this cytokine have been 

reported in PE pregnancy [13]. Tumor necrosis factor alpha 

(TNF-α) is a Th1-polarizing pro-inflammatory cytokine im-

plicated in maternal endothelial dysfunction leading to PE, 

impairing placental formation, and deregulating the balance 

of vasodilatation and vasoconstriction present in maternal 

circulation [14]. Even more, both IL-6 and TNF-α have been 

found elevated in Latin-American preeclamptic patients [15]. 

In contrast, IL-10 is a potent immunosuppressive cytokine, 

which has been considered a key modulator of immune toler-

ance at maternal-fetal communication promoting successful 

placentation, controlling inflammation, and regulating vascu-

lar function. In this case, decreased levels of IL-10 in placenta 

tissues and serum samples have been associated to PE [16].

Previously, cytokine gene alterations, such as single 

nucleotide polymorphism (SNPs), had been related to 

physiopathology in some inflammatory and obstetric 

complications. In this regard, SNPs in the proximal and 

distal region of IL-10 promoter (−1082 A/G, −819 T/C y 

−592 A/C) [17] are known to work as transcriptional regula-

tors. −1082 A/G has been related to lower IL-10 production 

[18], higher risk of PE [19] and early PE onset in an Indian 

population [20]. Additionally, −819 T/G has been associ-

ated with lower IL-10 production [20], higher risk of PE in 

a Chinese population [21] and early onset PE on Indians 

[20]. Other studies have associated −592A/C SNP with 

lower IL-10 production [22] and increased risk for PE in an  

Iranian population [23]. For TNF-α, evidence suggest  

an association between the transcriptional regulation of 

SNPs in its promoter region (−308 G/A, −238G/A) [24] and 

high levels of TNF-α in PE [25]. In contrast, IL-6 SNPs have 

yet to be associated with PE.

Considering this, we decided to explore the associa-

tion between PE and some relevant cytokine SNPs for IL-6 

(rs1800795), TNF-α (rs1800629) and IL-10 (rs1800872), in 

Mexican population. In that respect, the relevance of this 

investigation relies on the necessity for understanding the 

roles of genetic variants and their participation on inflam-

matory processes of PE. 

MATERIAL AND METHODS
Study participants

Written informed consent was obtained from all indivi-

dual participants included in the study. To calculate the size 

of the samples of interest, the formula was used to estimate 

the proportion of cases and controls with a power of 80%, 

significance level of p ≤ 0.05, and a loss value of the samples 

of 5% calculated a sample size of 86 individuals per group, 

for this reason, 186 pregnancies included in our case-control 

study, 100 normotensives with no complications and 86 PE 

patients. Biological samples and corresponding clinical data 

were collected from May 2018 to December 2019.

DNA isolation
Deoxyribonucleic acid (DNA) isolate was performed us-

ing whole blood sample with ethylenediaminetetraacetic 

acid (EDTA) anticoagulant following Gustincich protocol 

[26]. Deoxyribonucleic acid samples were quantified using 

NanoDrop One (Thermo Fisher Scientific, Waltham, Mas-

sachusetts, USA) and their integrity was verified in 1.5%  

agarose gels electrophoresis. 

TaqMan genotyping assays
Real-time PCR was performed using TaqMan SNP Geno-

typing Assays (Applied Biosystems, Foster City, CA, USA) and 

TaqMan Universal PCR Master Mix (Thermo Fisher Scientific) 

for the following SNPs: IL-6 (rs1800795, −237C>G, assay 

ID C__1839697_20. Applied Biosystems, CA, USA), TNF-α 

(rs1800629, −488G>A, assay ID C__7514879_10. Applied 
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Biosystems, CA, USA) and IL-10 (rs1800872, −627T>G, as-

say ID C__1747363_10. Applied Biosystems, CA, USA). The 

mixtures were incubated at 60°C for 30 s, then 95°C 10 min, 

followed by 40 cycles of 95°C for 15 s and 60°C for 1 min, and 

finally post read at 60°C for 30 s. Automated genotype cal-

ling was done using the TaqMan Genotyper Software v1.3.

Database analysis
Different databases such as dbSNP by National Center 

for Biotechnology Information (NCBI) (https://www.ncbi.

nlm.nih.gov/snp/), the Population Architecture using Ge-

nomics and Epidemiology (PAGE) (https://www.pagestudy.

org/) and SNPedia (https://www.snpedia.com/) were used 

to investigate variant details, clinical significance, and fre-

quency of SNPs in the study.  

Statistical analysis
Data was presented as mean ± standard deviation (SD) 

and frequencies. Differences in allelic and genotypic fre-

quencies were evaluated using Pearson’s Chi-squared test. 

SNPs associations were tested under dominant and recessive 

genetic models and odds ratios (OR) with 95% confidence 

intervals (CI) were used as the measure of association be-

tween specific alleles and genotypes with PE and its clinical 

subtypes. Hardy-Weinberg’s equilibrium was calculated by 

Chi-squared test for all genotypic combinations of each SNP 

in patients and controls. PASW v20.0 (SPSS inc., Chicago, IL, 

USA) software package was used for analysis. 

RESULTS
Table 1 summarizes the clinical characteristics of the 

study subjects. The mean of age of cases were similar to 

that of the control group (24.8 ± 6.4 vs 24.7 ± 7.2 years, 

respectively). Differences in the means of weight at last tri-

mester of the groups studied were observed, 83.4 + 18.1 kg  

for cases, and 74.4 + 13.1 kg for the control group, with 

evident statistical differences (p < 0.001). These results im-

pacted in body mass index (BMI) which were 27 + 6.4 vs 25.2 

+ 5.3 kg/m2 for cases and control groups, respectively, pre-

senting a statistical significance (p = 0.041). Cases showed 

higher blood pressure than the control group, in both sys-

tolic (144 + 16 vs 115 + 14 mmHg; p < 0.001) and diastolic 

(94 + 10 vs 74 + 9 mmHg; p < 0.001) measures. Interestingly, 

we found that 72.9% (62) of the total cases of newborns 

were at term and, there were no significant statistics be-

tween preterm birth and PE (p = 0.659). In the case of uri-

nary protein, levels were higher in case groups than in the 

control group (1248.2 + 1863.1 vs 257.3 + 119.7 mg/24 h)  

observing statistical differences (p < 0.001). Finally, the 

platelets were observed to have statistical differences as 

well (211.7 + 79.5 vs 237 + 69.7 103/mm3 for cases and 

controls, respectively; p = 0.025). 

Table 2 shows the distribution of genotypes and al-

lele frequencies of IL-6 (−237C>G), TNF-α (−488G>A), and 

IL-10 (−627T>G) for the preeclamptic and normotensive 

patients. All frequencies for the three SNPs were similar 

between cases and controls (p > 0.05).  Moreover, genotype  

Table 1. Clinical characteristics of cases and controls groups [mean ± standard deviation (SD)]

Variable
Cases 
n = 86

Controls 
n = 100

p value

Age [years]a 24.8 ± 6.4 24.7 ± 7.2 0.665 

Weight last trimester [kg]b 83.4 ± 18.1 74.4 ± 13.1 < 0.001

BMI [kg/m2]b 27.0 ± 6.4 25.2 ± 5.3 0.041

Systolic BP [mmHg]a 144 ± 16 115 ± 14 < 0.001 

Diastolic BP [mmHg]a 94 ± 10 74 ± 9 < 0.001 

Weeks at deliverya 37.6 ± 2.1 37.3 ± 3.5 0.731

Newborn birth weight [kg]b 3.0 ± 0.8 3.1 ± 0.6 0.804

Size of newborn [cm]a 49.6 ± 3.0 49.0 ± 3.9 0.367 

24-h urinary protein [mg/24 h]a 1248.2 ± 1863.1 257.3 ± 119.7 < 0.001

Urea [mg/dL]a 17.3 ± 6.8 17.1 ± 7.7 0.829

Creatinine [mg/dL]a 0.7 ± 1.6 0.7 ± 0.4 0.785 

Platelets [10∧3/mm3]b 211.7 ± 79.5 237 ± 69.7 0.025

CRP [mg/dL]a 2.8 ± 5.0 5.0 ± 8.8 0.254

LDL cholesterol [mg/dL]b 134.5 ± 55.9 193.0 0.550

AST [U/L]a 25.1 ± 10.8 28.0 ± 10.4 0.284 

ALT [U/L]a 25.7 ± 18.3 26.6 ± 14.4 0.831

aMann-Whitney U statistical model; bt-student statistical model; BMI — body mass index; BP — blood pressure; CRP — C-reactive protein; LDL cholesterol — low-density 
lipoprotein cholesterol; ALT — alanine aminotransferase; AST — aspartate aminotransferase
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distributions of IL-6 — (p = 0.599), TNF-α (p = 0.721) and IL-10  

(p = 0.761) SNPs in the groups were in agreement with Hardy– 

–Weinberg equilibrium. 

Interestingly, our allele frequencies results are similar 

to those reported in dbSNP by NCBI for Mexican (IL-6 and 

TNF-α) and Latin American population (IL-10), where IL-6 

(−237C>G) shows allelic frequencies as follow A: 15% vs a: 

85%, TNF-α (−488G>A) A: 93% vs a: 7% and IL-10 (−627T>G) 

A: 30% vs a: 70%. 

DISCUSSION
As expected, in the case group, significant statistical dif-

ferences were observed in the last trimester of pregnancy 

in the mother’s weight, BMI, blood pressure, urine protein 

content, and platelets, in comparison to control group, as 

reported in most studies.

The role of inflammation in the pathogenesis of pre-

eclampsia has been the object of recent studies. In this regard, 

a study described elevated levels of inflammatory markers 

such as TNF-α, IL-6, and C-reactive protein in preeclamptic 

patients and demonstrated that Latin-American women  

present a higher degree of inflammation than women from 

developed countries [15]. Interestingly, the induction of 

both IL-6 and TNF-α in these PE patients was attributed to 

chronic subclinical infections and insulin resistance [15]. The 

IL-6 (rs1800795) SNP has been associated with diseases such 

like chronic obstructive pulmonary disease, higher risk of 

death after an acute coronary syndrome and atherosclerosis 

[27]. As with our observations, IL-6 (−237C>G) SNP studied 

in other populations [28] have shown not association with 

PE (p = 0.969). 

A study genotyped 503 tagSNPs in 40 genes related to 

inflammation on a cohort of pregnant African American 

mothers finding no association between IL-6 and PE; the 

same study found gene-level association of an upstream 

regulator of TNF-α with PE among European Americans. 

Their conclusion was that despite previous studies have 

suggested null associations, increased tagging and stratifi-

cation by genetic ancestry suggests important association 

between TNF-α regulator and PE among European Ameri-

cans [29]. TNF-α (rs1800629) SNP has been associated with 

some conditions such as acute kidney allograft rejection 

and acute myocardial infarction. Specifically, this SNP has 

been associated with PE in Turkish, Iranian, and Finnish 

populations [23, 30]. In line with previous reports [31, 32], 

our study did not find an association between PE and TNF-α 

(488G>A) polymorphism (p = 0.649); perhaps not surpris-

ingly considering the native-American genetic ancestry of 

our Mexican cohort.

The IL-10 (rs1800872) SNP has been associated with 

some diseases as squamous intraepithelial cervical lesions 

and PE, among others [33]. Our data did not find an as-

sociation between PE and IL-10 (−627T>G) polymorphism  

(p = 0.573), agreeing with previous reports in Japanese and 

Iranian populations [34, 35]. Nevertheless, some studies show 

different results in the Chinese and Iranian population [13, 36].  

Another study investigating association between PE and 

cytokine gene polymorphisms in Brazilian Mulatto women 

from the northeastern region of Brazil found no differ-

ence in genotype or allelic frequencies for TNF-α promoter 

(−308 G>A), IL6 promoter (−174 G>C), IFN-gamma intron 1 

(+874 A>T), IL10 promoters (−1082 A>G), (−819 C>T) and  

Table 2. Gene and allele frequencies of IL-6, TNF-α and IL-10

Genotype frequencies Allele frequencies

NH
# [%]

HT
# [%]

MH
# [%]

Total
# [%]

p valuea A
# [%]

a
# [%]

Total
# [%]

p valuea

IL-6 (-237C>G)

 Cases
2

(2.3)
26

(30.2)
58

(67.4)
86

(100)
0.969

30
(17.4)

142
(82.6)

172
(100)

0.890

 Controls 
2

(2.0)
29

(29.0)
69

(69.0)
100

(100)
33

(16.5)
167

(83.5)
200

(100)

TNF-α (-488G>A)

 Cases 
73

(84.9)
13

(15.1)
0

(0)
86

(100)
0.649

159
(92.4)

13
(7.6)

172
(100)

0.849

 Controls 
84

(84.0)
15

(15.0)
1

(1.0)
100

(100)
183

(91.5)
17

(8.5)
200

(100)

IL-10 (-627T>G)

 Cases
16

(18.6)
37

(43.0)
33

(38.4)
86

(100)
0.573

69
(40.1)

103
(59.9)

172
(100)

0.347

 Controls
21

(21.0)
48

(48.0)
31

(31.0)
100

(100)
90

(45.0)
110

(55.0)
200

(100)

aPearson’s Chi-squared test; NH — normal homozygous; HT — heterozygous; MH — mutated homozygous
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(−592 C>A) and TGF-beta1 codon 10 (+869 T>C) and codon 

25 (+915 G>C) [34].

It is well known that genetic variability between eth-

nic populations exists. While some SNPs may be more 

prevalent in some specific groups, contradictory reports 

on inflammatory cytokine SNPs associated to PE may also 

relate to unforeseen variables such as subclinical infec-

tions and chronic immune disorders. Of notice, while all 

pregnant women of our study were recruited in Culiacan 

city, a wide ethnic genetic diversity of our cohort was en-

sured by the fact that this hospital is the only concentrat-

ing Women Hospital in the public health systems across 

the entire state of Sinaloa, even receiving patients from 

neighboring states.

It is known that the up-regulation of pro-inflammatory 

cytokines such as IL-6, TNF-α, and downregulation of anti-

inflammatory IL-10, may increase inflammatory response 

in pregnancies, causing an exacerbated immune system 

response, contributing to abnormal placentation and con-

sequent hypoperfused placenta, conditions that have been 

widely recognized in preeclampsia. 

CONCLUSIONS
There were no differences of IL-6 (rs1800795), TNF-α 

(rs1800629) and IL-10 (rs1800872) in genotypes and allele 

frequencies of the SNPs between preeclamptic and normo-

tensives patients, ruling out their participation in the disease 

of this population. Moreover, genotype distributions for IL-6, 

TNF-α and IL-10 SNPs in both groups were in agreement with 

Hardy–Weinberg equilibrium. 
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