Immunolocalization of ABC drug transporters in human placenta from normal and gestational diabetic pregnancies

Danuta Kozłowska-Rup¹, Piotr Czekaj¹, Danuta Plewna¹, Jerzy Sikora²

¹ Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
² Chair and Department of Perinatology and Gynecology, School of Health Sciences, Medical University of Silesia, Katowice, Poland

Abstract

Objectives: ABC transporters, P-gp, MDR3, BCRP and MRP1, can bind both endo- and exogenous ligands. The latter include immunosuppressive, anticancer, sedative, anticonvulsant, antiparasitic and cardiovascular drugs, as well as HIV protease inhibitors and antibiotics. Protein transporters are also involved in tissue distribution of orally administered medicines in combination therapy for gestational diabetes mellitus (GDM) and could be used during GDM treatment. The distribution depends on transporter specificity, its expression and subcellular localization.

The aim: The aim of the study was to compare P-gp, MDR3, BCRP and MRP1 localization in placental tissues from normal and GDM diabetic pregnancies.

Material and methods: Tissue samples were taken from 10 normal and 10 GDM placentas. Immunohistochemical reactions were performed with the use of adequate monoclonal antibodies. Avidin-biotin-peroxidase complex method was used for the visualization of antigen-antibody complexes.

Results: P-gp, MDR3 and BCRP were found in all parts of normal human placenta i.e. the amniotic epithelium, cytotrophoblast, syncytiotrophoblast and decidual cells. P-gp and BCRP, but not MDR3 and MRP1, were also localized on the endothelial cells of fetal blood vessels in the chorionic plate, as well as stem and tertiary villi. MRP1 expression was observed in the cytotrophoblast and the syncytiotrophoblast. Its expression was very low or undetectable in the amniotic epithelium and the majority of decidual cells. Immunohistochemical reactions within the syncytiotrophoblast showed apical (P-gp, BCRP), apical and basal (MRP1) or diffuse (MDR3) distribution. The main changes observed in GDM placentas included weaker MRP1 and MDR3 positive reactions in the syncytiotrophoblast, slightly lower expression of P-gp in the decidual and amniotic epithelial cells, and MDR3 in the amniotic epithelium.

Corresponding author:
Piotr Czekaj,
Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice,
Medical University of Silesia, Katowice,
Medyków 18, 40-752 Katowice, Poland
Phone: +48 32 2088374
Fax: +48 32 2526574
e-mail: pcz@sum.edu.pl.

Otrzymano: 12.06.2013
Zaakceptowano do druku: 15.11.2013
Conclusions: Our results indicate that GDM-related changes in the environment of placental cells do not substantially influence tissue and subcellular location of ABC transporters. Nevertheless, the expression of P-gp, MDR3 and MRP1 may be lower in comparison to normal placentas. Basal syncytiotrophoblast transporters, MRP1 and MDR3, seem to be more sensitive to the influence of GDM than apical proteins, what may result in altered biodisposition of endogenous substrates and drugs.

Key words: ABC drug transporters / P-glycoprotein / breast cancer resistance protein BCRP / multidrug resistance protein MDR3 / multidrug resistance-associated protein MRP1 / human placenta / gestational diabetes mellitus /

Streszczenie

Mellitus

Multidrug Resistance-Associated Protein 1; GDM, Gestational Diabetes Cancer Resistance Protein; MDR3, Multidrug Resistance Protein 3; MRP1, ABC, ATP-Binding Cassette Superfamily; P-gp, P-glycoprotein; BCRP, Breast Abbreviations:

– białko związane z opornością wielolekową; GDM – cukrzyca ciążowa.

białko oporności raka sutka; MDR3 – białko oporności wielolekowej 3; MRP1 – białko związane z opornością wielolekową; GDM – cukrzyca ciągowa.

Wstęp: Białka transportowe ABC: P-gp, MDR3, BCRP i MRP1 są zdolne do wiązania ligandów, zarówno endo-, jak i egzogennych. Wśród nich znajdują się leki immunosupresyjne, przeciwnowotworowe, uspokajające, przeciwdrapieżnicze, przeciwpasożytnicze i sercowo-naczyniowe, inhibitory proteazy HIV oraz antybiotyki. Transportery uczestniczą też w dystrybucji tkankowej doustnych leków stosowanych w leczeniu skojarzonym cukrzycy, które mogłyby mieć zastosowanie także w terapii cukrzycy ciągłej (GDM). Dystrybucja tych związków zależy m.in. od specyficzności transportera, jego ekspresji oraz lokalizacji subkomórkowej.

Cel pracy: Porównanie lokalizacji białek transportowych P-gp, MDR3, BCRP i MRP1 w tkankach łóżek ludzkich pochodzących z ciąży prawidłowej i powikłanej cukrzycą ciągową.

Materiał i metody: Z 10 łôżek pochodzących z ciąży prawidłowych i 10 łôżek z ciąz powikłanych cukrzycą ciągową pobrano wycinki tkankowe, z których uzyskano skrawki parafinowe. Wykonano reakcje immunohistochemiczne z zastosowaniem odpowiednich przeciwciał monoklonalnych oraz dokonano wizualizacji odczynów zastosowaniem kompleksu awidyna-biotyna-peroksidadu.

Wyniki: Zidentyfikowano P-gp, MDR3 i BCRP we wszystkich warstwach prawidłowego łôżka ludzkiego, m.in.: w nabłonku owodni, cytotrofoblaście, syncytiotrofoblaście oraz w komórkach doczynowych. P-gp i BCRP zlokalizowywano także w śródbłonku płodowych naczyń krwionośnych w płycie kosmówkowej oraz w pniach kosmówkowych i kosmówkach trzeciorzędowych. Dla odmiany, ekspresja MDR3 i MRP1 w śródbłonku była słaba lub nieoznaczalna. W komórkach nabłonka owodni i większych komórek doczynowych ekspresja ta była bardzo niska lub nieoznaczalna. W syncytiotrofoblaście reakcje immunohistochemiczne lokalizowały się w części szczytowej (P-gp, BCRP), szczytowej i podstawowej (MRP1) lub mały charakter dyfuzyjny (MDR3). Najistotniejszymi zmianami obserwowanymi w łôżkach GDM były: słabsza pozytywna reakcja dla MRP1 i MDR3 w syncytiotrofoblaście, niższa ekspresja P-gp w doczesnej i w nabłonku owodni oraz MDR3 w nabłonku owodni.

Wnioski: Przeprowadzone obserwacje wskazują, że procesy zachodzące w środowisku komórek łôżkowych w GDM nie powodują zasadniczych zmian w lokalizacji i podkomórkowej transporters ABC. Tym niemniej, ekspresja P-gp, MDR3 i MRP1 może być obniżona w stosunku do łôżek prawidłowych. Transportery typowe dla części podstawowej syncytiotrofoblastu: MDR3 i MRP1 występują bardziej wraźnie na wpływ GDM niż transportery apikalne, co może skutkować zmianami w biodyspozycji substratów endogennych i xenobiotyków.

Stwórka kluczowe: transportery ABC / glikoproteina P / białko oporności raka sutka BCRP / białko oporności wielolekowej MDR3 / białko związane z opornością wielolekową MRP1 / łôżko ludzkie / cukrzyca ciągowa /

Introduction

The placental barrier between maternal and fetal blood circulations is an important factor limiting the influx of endogenous compounds that are essential for proper fetal development, and those products of cell metabolism and xenobiotics which might pose a threat for the developing organism. The syncytiotrophoblast, with underlying basement membrane, and the endothelium of the fetal capillaries, lying on its own basement membrane, constitute the main components of the placental barrier. The syncytiotrophoblast is formed by fusion of mononuclear cytotrophoblast cells. The apical surface of the syncytiotrophoblast is in direct contact with maternal blood flow.

Abbreviations:

ABC, ATP-Binding Cassette Superfamily; P-gp, P-glycoprotein; BCRP, Breast Cancer Resistance Protein; MDR3, Multidrug Resistance Protein 3; MRP1, Multidrug Resistance-Associated Protein 1; GDM, Gestational Diabetes Mellitus
It is enlarged by numerous microvilli and has approximately 13 m² by the end of pregnancy. The thickness of the placental barrier changes over the course of pregnancy, decreasing to 4-5 μm towards the end. Syncytiotrophoblast plasma membrane is not only structurally polarized because of the existence of the brush border on its apical surface, but it is also functionally differentiated as a consequence of specific, apical or basolateral distribution of enzymes, hormone receptors and transporters [1, 2, 3, 4]. Transport proteins are also present in the plasma membrane of amniotic epithelial cells and endothelial cells of blood vessels [5, 6]. In general, they ensure mother-to-fetus transfer of nutrients, and metabolic products in the opposite direction. Furthermore, some protein transporters, involved in the efflux of endogenous ligands behind the placental barrier, can bind exogenous compounds and protect the fetus against xenobiotics [6, 7].

The ATP-Binding Cassette (ABC) superfamily represents a group of placental proteins that transport their substrates across the plasma membrane against the concentration gradient, with the use of ATP as the energy source. Glycoprotein P (P-gp), Multidrug Resistance Protein 3 (MDR3), and Breast Cancer Resistance Protein (BCRP) are known as the efflux transporters, while Multidrug Resistance-Associated Protein 1 (MRP1) as the efflux-influx transporter [5, 7, 8, 9]. P-gp mRNA and protein expression in the syncytiotrophoblast has been known to decrease during pregnancy. In addition, transplacentual passage of drugs that are P-gp substrates is much higher at 38-40 weeks of gestation than in earlier pregnancy. Thus, P-gp-dependent protection may be the weakest in the late stages of fetal development [10, 11]. Whilst P-gp expression is diminished, MRP1 and MRP2 expression continues to increase throughout pregnancy [12]. Among other MRP proteins, MRP3 expression remains unchanged up to the end of the third trimester. In turn, MDR5 decreases at the same time. BCRP shows high expression during pregnancy, achieving maximal protein level in the middle of the gestation period. It should be noted that the placental BCRP mRNA level is more than one hundred times higher than in other tissues. It is believed that different expression levels of ABC transporters during pregnancy allow for the continuous functioning of compensatory mechanisms for fetal protection at various stages of intrauterine development [13].

The expression of placental ABC transporters is probably regulated by steroids, growth factors and cytokines secreted during pregnancy [10, 13]. In case of P-gp and BCRP, it may depend on the polymorphisms of ABCB1 and ABCG2 genes, respectively [11, 13, 14]. Secretion of regulatory factors changes significantly in pregnancy-associated disorders. The incidence of both, diabetes and gestational diabetes mellitus (GDM), continues to increase among pregnant women. GDM has been estimated to develop in 3-5% of pregnant women and, if untreated, can lead to severe complications [15]. As ABC proteins are able to transfer numerous chemical substances (organic and inorganic ions, proteins, steroids, thyroxin, vitamins and prostaglandins), and therapeutics (immunosuppressive, anticancer, sedative, anticonvulsant, antiparasitic and cardiovascular drugs, HIV protease inhibitors, antibiotics and oral hypoglycemic agents), across the cytoplasmic membrane, understanding the role of ABC transporters in tissue distribution of these compounds in the mother, placenta and fetus, may be crucial for evaluating therapy efficiency in diabetes and other accompanying diseases in pregnancy [16, 17, 18]. Drug transfer across the placenta depends, among others, on specificity (type), expression and localization of placental ABC transporters. As a consequence of various localizations and specific functions, the directions of drug passage can be changed, determining fetal drug exposure. The knowledge could be crucial for optimizing the therapeutic strategy for pregnant mother and protecting the fetus.

Data on proper tissue and cellular location of ABC transport proteins in the human placenta are scarce. Hence, the direction of drug passage and transporter functional role during pregnancy have not been fully explained [19]. Changes in the localization of placental transporter proteins in GDM-complicated pregnancy are yet to be elucidated. In our study we used the immunohistochemical method to determine tissue and cellular localization of ABC transporter proteins: P-gp, MDR3, BCRP and MRP1, in human placenta from physiological and GDM-complicated pregnancies.

Material and methods

Human placentas

Human full-term placentas were obtained after elective, uncomplicated cesarean sections from the Perinatology and Gynecology Ward, Central Clinical Hospital, Medical University of Silesia, Katowice. Ten healthy women (control group) and ten subjects with diet-managed GDM (study group), with no symptoms of infection, were recruited. All participants gave their informed consent for the study.

Diagnostic criteria for GDM

Diagnostic criteria for GDM were in accordance with the Polish Gynecological Society standards of medical care in management of women with diabetes [20]. The study group included patients with onset and first recognition of glucose intolerance during pregnancy, although no known risk factors for GDM were recognized at that time. Fasting plasma glucose level ≤100 mg/dl was evaluated in all patients at the first prenatal visit. Afterwards, between 24 and 28 weeks of gestation, oral glucose tolerance test (OGTT) was performed. The test involved drinking a solution containing 75 g glucose by fasting individuals, and measurements of the blood glucose concentration at fasting, and after 1 and 2 hours. The diagnostic criteria for GDM from the WHO guidelines were applied for OGTT evaluation. The test was “positive” when at least one of the following values was found: fasting blood glucose level ≥ 100 mg/dl (5.5 mmol/l), 1-hour blood glucose level ≥180 mg/dl (10.0 mmol/l) or 2-hour blood glucose level ≥140 mg/dl (7.8 mmol/l). Before the final diagnosis, a 24-hour glycemic profile and glycated hemoglobin (HbA1c) levels were evaluated. GDM type G1 was diagnosed in each patient from the study group if blood glucose concentration was 60-90 mg/dl (3.3-5.0 mmol/l), maximal glucose level one hour after a meal was <120 mg/dl (<6.7 mmol/l); glucose concentration between 2.00 and 4.00 hours was >60 mg/dl (3.3 mmol/l); mean 24-hour glycemic value was 95 mg/dl (5.3 mmol/l); and HbA1c level was <6.1%. Then, dietary treatment was implemented in order to achieve normoglycemia. Therapy effectiveness was monitored by measuring fasting plasma glucose levels (once a week), a 24-hour glycemic profile (once a month), and HbA1c levels (every 6 weeks).
Table I. Antibodies used for ABC transporters immunolocalization.

<table>
<thead>
<tr>
<th>Primary antibody</th>
<th>Dilution</th>
<th>Secondary antibody</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-P-Glycoprotein (MDR), Clone F4 (Sigma)</td>
<td>1:500</td>
<td>Anti-Mouse IgG biotinylated antibody (Vector)</td>
<td>1:200</td>
</tr>
<tr>
<td>Anti-MDR3 P-Glycoprotein, Clone P3II-26 (Sigma)</td>
<td>1:100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCRP/ABCG2 antibody [BXP-21] (Abcam)</td>
<td>1:200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRP1 (QCRL-1) (Santa Cruz Biotechnology)</td>
<td>1:500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. P-gp immunolocalization in normal and GDM human placentas at term.
Microphotographs show P-gp detection in human placentas. A – in the amniotic epithelium (GDM); B – in extravillous cytotrophoblast cells and fetal blood vessel endothelial cells in the chorionic plate (Control). Arrows point to the amniotic epithelium, cytotrophoblast and endothelium. C – shows P-gp expression at the apical syncytiotrophoblast plasma membrane in stem villi (Control); D – in tertiary villi (GDM). Arrows point to the places of both, high and low expression. E and F – show a difference in P-gp expression between control and GDM decidual cells, respectively. Negative control is shown in the blue frame. Magnification: A, E, F and blue frame – 200x; B, C, D – 400x.
Immunohistochemistry

The tissue sections were taken from the pericentral part of the placenta. Tissue samples were fixed overnight in 10% neutral-buffered formalin, dehydrated by standard procedure, and finally embedded in paraffin. The obtained paraffin blocks were cut into 5 μm slices. To perform immunohistochemical reactions (IHC), sections were dewaxed and rehydrated. Antigen retrieval was performed by incubating tissue sections in target retrieval solutions in water bath at 95°C for 30 min. and cooling for at least 30 min. Afterwards, the slices were washed for 5 min. in distilled water and phosphate buffered saline containing 0.05% Tween 20 (PBS-T).

To avoid non-specific binding of antibodies, tissue slices were incubated for 30 min. with PBS-T containing normal horse serum. Then, they were incubated overnight (at 4°C) with anti-human mouse monoclonal antibodies shown in Table 1. Mouse IgG (Vector Laboratories) were used as the negative control. Endogenous peroxidase activity was blocked for 10 min. with 0.3% H₂O₂. Biotinylated secondary horse anti-mouse antibodies (Vector laboratories) were applied for 30 min. at room temperature.

Avidin-biotin-peroxidase technique (Vectastain Elite ABC kit; Vector Laboratories) with 3,3'- diaminobenzidine (DAB; Vector Laboratories) as a substrate for peroxidase, was used to visualize the primary antibody. Finally, histological slices were washed, counterstained with hematoxylin and mounted on the permanent Vecta Mount medium (Vector Laboratories).

Immunohistochemical stains were made on five sections taken from each placenta and analyzed under Eclipse 600 (Nikon) microscope equipped with a Sony SSC-DC58AP camera. The specimens included a whole cross-section through the placenta containing all histological layers of the fetal and maternal part.

Results

Immunohistochemical data demonstrated the presence of P-gp, MDR3, and BCRP in the fetal and maternal part of the human placenta both, in healthy and diabetic women. MRP1 was identified mostly in the fetal part of the human placenta.

1. P-gp localization

Healthy placenta: P-gp was detected in all parts of the human placenta (Figure 1), namely, amniotic epithelium, syncytiotrophoblast apical plasma membrane, stem and tertiary...
villi, and decidual cells. A higher expression of P-gp was observed in most villi, but in some villi its absence or very low positive reaction were found. P-gp was also localized in villous and extravillous cytotrophoblast, for example in the chorionic plate, as well as on the endothelial cells of fetal blood vessels, mostly in the chorionic plate and – to a lesser degree – in stem and tertiary villi.

GDM placentas: There were not distinct differences in P-gp localization in the syncytiotrophoblast between normal and diabetic placentas (Figure 1D). Nevertheless, P-gp expression in decidual (Figure 1E and F) and amniotic epithelial cells was weaker comparing to controls.

2. **MDR3 localization**

Healthy placentas: MDR3 was found in all parts of the human placenta. MDR3 was expressed in amniotic epithelial cells, villous and extravillous cytotrophoblast, syncytiotrophoblast and decidual cells (Figure 2). The immunological reaction within the syncytiotrophoblast was very intense and showed diffuse distribution. The expression was high in the extravillous cytotrophoblast localized in the chorionic plate. On the other hand, there was very weak positive immunological reaction in the endothelial cells of the fetal blood vessels in the chorion and villi.

GDM placentas: We observed weaker MDR3 expression within the GDM placental syncytiotrophoblast when compared

Figure 3. BCRP immunolocalization in normal and GDM human placentas at term. BCRP protein detection in: A – amniotic epithelium (Control); B – decidual cells (Control). In these locations there were no visible differences when compared to GDM placentas. Strong immunoreactivity at apical syncytiotrophoblast plasma membrane and fetal blood endothelial cells was found in the villi (arrows) of control (C) and GDM (D) placentas, as well as in endothelial cells in the chorionic plate blood vessels, both in normal (not shown) and GDM placentas (E). Negative control is framed in blue. Magnification: A, B – 200 x; C, D, E and blue frame – 400x.
to normal ones. In few villi that expression appeared in the apical plasma membrane (Figure 2E). In most villi it was diffuse (Figure 2F). Finally, MDR3 immunoreactivity in amniotic epithelium was lower comparing to healthy placentas. There were no other differences in the MDR3 localization between normal and GDM placentas.

3. BCRP localization

Healthy placentas: Very intense immunohistochemical reaction for BCRP was detected in placental tissues (Figure 3). Amniotic, decidual and cytotrophoblast cells showed diffuse distribution of BCRP in their cytoplasm. In addition, decidual cells exhibited marked BCRP expression in plasma membrane (Figure 3B). Strong positive BCRP reaction was found in apical syncytiotrophoblast plasma membrane, both in stem and tertiary villi, as well as in the endothelial cells of the fetal blood vessels in the chorionic plate and in all generations of villi.

GDM placentas: No visible differences in BCRP location between the controls and the GDM group were observed.

4. MRP1 localization

Healthy placentas: MRP1 expression was not observed in the amniotic epithelium and in the majority of decidual cells (Figures 4A and B), while in most endothelial cells of the blood vessels
it was low or undetectable (Figure 4C). MRP1 was localized predominantly on the basal surface of the syncytiotrophoblast plasma membrane. However, in some places the apical surface of the syncytiotrophoblast was also markedly stained (Figures 4C and E). It should be emphasized that both MRP1 localizations in the syncytiotrophoblast membrane were distinct but they were confined to some stem and tertiary villi. MRP1 expression was also observed in villous cytotrophoblast (Figure 4G).

GDM placentas: The main difference when comparing with the control group was slightly lower MRP1 expression in the syncytiotrophoblast of the GDM group (Figures 4D, F and H). Positive immunoreactivity in the amniotic epithelium cells was observed in one of the placentas from the GDM group.

Discussion

Localization of ABC transporters in the human placenta reflects their cell-specific expression. It means that increasing or decreasing range of their occurrence in the placental tissues may result from appearance or disappearance of protein expression in certain locations, what is dependent, among others, on gestation age. Most ABC transporters (P-gp, BCRP, MRP2, MRP4) are known to be localized on the apical surface of the syncytiotrophoblast. In turn, MRP1 and MRP3 are located both, in the basal and apical membranes; MRP5 and MDR3 in the basal plasma membrane of the syncytiotrophoblast [10, 12, 21, 22]. Furthermore, immunohistochemical studies showed that BCRP, MRP3 and MRP5 can also be found in the endothelium of fetal capillaries in the chorionic villi and BCRP can be expressed in the amniotic epithelium, chorion and decidua of placentas from the third trimester of pregnancy [13]. ABC transporter expression is most likely controlled by steroids, growth factors and cytokines secreted during pregnancy [10,13]. For instance, BCRP expression is negatively regulated by some cytokines and stimulated by estrogens, epidermal growth factor (EGF) and insulin-like growth factor II (IGF II). Although elevated cytokine concentrations play a role in pregnancy-induced insulin resistance, results of *in vitro* experiments on primary term trophoblast showed a decrease in BCRP mRNA expression after exposure to TNFα and IL-1β [12]. Recent studies indicate that TNFα and IL-1β can inhibit most of ABC transporters located in the apical membrane of syncytiotrophoblast, while IL-6 stimulates or inhibits their expression, depending on the transporter. Basolateral syncytiotrophoblast transporters are relatively insensitive to cytokine stimulation. The fact that TNFα and IL-1β reduce the expression of BCRP and MDR1 may have significant clinical implications in obstetric disorders linked with elevated cytokine concentrations, as it would result in increased fetal exposure to xenobiotics and trophoblast cell susceptibility to apoptosis [12, 23, 24, 25].

We found presence of P-gp in different parts of healthy term placentas, predominantly in the syncytiotrophoblast plasma membrane of stem and tertiary villi. The main functional significance of P-gp may result from its apical plasma membrane localization in the syncytiotrophoblast, where the transporter may be responsible for an efflux of harmful compounds from the fetal compartment, thus protecting the fetus against toxicity. It should be noted that similarly to other studies [26], we found no specific distribution pattern of the P-gp-positive reaction in different parts of the stem villi branches. We confirmed the presence of P-gp in the amniotic epithelial cells [5]. Also, we found a positive immunohistochemical reaction in the cytotrophoblast cells, in the endothelial cells of large fetal blood vessels in the chorionic plate and stem villi, and – to a lesser degree - of capillaries of tertiary villi. These localizations extend the barrier role of P-gp outside the apical surface of the syncytiotrophoblast and make it cytoprotective in terms of specific types of cells.

The literature lacks data on P-gp localization in human term placentas of GDM mothers. However, many disorders like preeclampsia, intrauterine growth restriction (IUGR) or GDM have been known to be connected with the activation of oxidative and inflammatory pathways. They may affect ABC transporter expression and localization [12,19]. Experiments on the primary cultures of the trophoblast, JAr and BeWo cell lines, showed downregulation of P-gp under inflammatory conditions [12]. In our study, we did not find any differences in P-gp location in GDM placentas comparing to controls, but P-gp expression in the amniotic epithelial and decidual cells was slightly weaker in diabetic placentas. One study demonstrated that P-gp mRNA, but not P-gp protein expression, was significantly elevated in GDM placentas [27], what supports our findings. Our results need further quantification, but they indicate that GDM diabetic environment can lead to a decrease in P-gp amniotic and decidual expression without changing the location in the placental tissues. In another study, the authors demonstrated that different subcellular locations of the transporter proteins were possible. They found changes in the P-gp localization from microvillous apical syncytiotrophoblast plasma membrane to its cytoplasmic compartment and basal membrane in retroviral transduced explants [28]. The significance of these observations arises from the fact that P-gp has been shown to take a part in active efflux of hydrophobic xenobiotics, their metabolites and steroid hormones. Cytostatics, HIV protease inhibitors, antibiotics, opioids, antimimetics, and diagnostic dye-rodhamine 123 are recognized P-gp substrates [2, 29]. P-gp plays an important clinical role in the limitation of fetal exposure to anthracyclines and taxanes that are recommended for pregnant women [29]. Materno-fetal transfer of doxorubicin was not shown even at high doses [17], decreasing the risk of fetus exposition. Furthermore, specific location of the observed changes in P-gp expression restricted to amniotic and decidual cells might indicate a modified transporter function in relation not only to exogenous, but also to endogenous substrates.

In our study, we detected MDR3 (P-gp homologue) mainly in the syncytiotrophoblast, where it showed diffuse distribution. MDR3 localization at the basal membrane of the syncytiotrophoblast seemed to be not obviously predominant, but other studies pointed to the basolateral position as the main place of MDR3 location [19, 30]. It could suggest an opposite direction of the substrate efflux, as compared to P-gp, i.e. towards the fetal circulation. MDR3 expression was also abundant in the amniotic epithelium, chorionic cytotrophoblast and decidual cell cytoplasm. On the other hand, some authors failed to detect MDR3 protein in the analyzed amnion membranes [5]. Strong expression of MDR3 protein in term placentas may suggest that it plays an important role in fetal development, however the physiological role of MDR3 in the human placenta remains unexplained. MDR3 is known to be involved in the efflux of phosphatidylcholine from cells, however some pharmacetics (also P-gp substrates) are known to be its ligands [30].
There is no data available on MDR3 localization in GDM term placentas. In a few villi we found the expression of MDR3 to be located in the syncytiotrophoblast apical plasma membrane, but diffuse reaction within the syncytiotrophoblast was predominant. The change in the location of MDR3 from basal to apical surface of the syncytiotum might enhance xenobiotic efflux in GDM placentas, but that change covered only a small part of the chorionic villi. Moreover, MDR3 staining in the syncytiotrophoblast and amniotic epithelium of GDM placentas was weaker when compared to controls. It seems that changes in MDR3 expression may result in more important metabolic consequences than the observed changes in the transporter localization.

Immunohistochemical studies showed that BCRP is localized in the syncytiotrophoblast and additionally in the endothelium of fetal capillaries, amniotic epithelium, chorion and maternal decidua [12, 13]. Our results confirmed these findings. We detected intense positive staining of BCRP localized at the maternal-facing side of the syncytiotrophoblast, mostly in the stem and tertiary villi. Strong positive BCRP reaction was found in the endothelial cells of the blood vessels of fetal circulation. Such location seems to be strictly connected with the role of BCRP as the component of placental barrier reducing fetus exposure to xenobiotics. BCRP is involved in the transport of many drugs, including anticancer drugs like mitoxantrone, captopthecin derivatives (topotecan, irinotecan), epirubicin, etoposide, methotrexate, daunorubicin, and nucleoside analogues - zidovudine and lamivudine. Prazosin, dipyriramole, phytoestrogens and drugs that are widely used in the therapy of pregnant patients (nitrofurantoin, cimetidine or glyburide), are among other substrates of BCRP. Many of those are also P-gp substrates [13]. Amniotic epithelial, cytotrophoblast and some decidual cells (including both cytoplasm and plasma membrane) also showed BCRP expression. Such different locations of BCRP in the placenta can reflect its protective function against the effects of hypoxia and oxidative stress and maintenance of stem cell regeneration potential [24, 31].

We did not notice any significant differences in BCRP localization between control and GDM placentas, what may result in unchanged materno-fetal disposition of therapeutics, including oral hypoglycemic agents. In addition, it was shown in the studies of Anger et al., that average placental BCRP mRNA expression in insulin-managed diabetes did not significantly differ from controls [27].

MRP transporters have higher substrate specificity than P-gp. Numerous clinically important anionic drugs are preferred substrates for MPR. MRP proteins are involved in the transport of methotrexate, etoposide, vinblastine, vincristine, HIV protease inhibitors and some fluorouracilone antibiotics [2, 16]. In our studies MRPI was localized both on basal and apical surface of the syncytiotrophoblast, but the basal membrane was the predominant place of its location. Interestingly, MRPI expression in the endothelial cells was very low and it was not observed in the majority of maternal decidual cells and the amniotic epithelium. Such localization in human placenta may give evidence to its different endogenous function in delivering nutrients to rapidly growing fetus, as compared to BCRP and P-gp. That role of MRPI was suggested to be more important than providing barrier protection to limit the entry of foreign compounds into the fetal circulation [19]. Similar results were obtained by other authors [32], with the exception of Aye et al. [5], who successfully localized MRPI in the amniotic epithelium.

It should be noted the single cases of observed MRPI expression in normal amniotic epithelium and described in the literature, as well as found by us in GDM placentas, indicate that there might be significant differences in the MRPI expression in the amniotic epithelium between individuals. The only difference we found in GDM diabetic placentas was a lower MRPI immunoreactivity in the syncytiotrophoblast. Results of the experiments where the primary term trophoblast was treated with cytokines, showed increased MRPI mRNA expression, but not altered protein levels [12]. If our observations were to be confirmed in quantitative studies, it might indicate that the GDM-dependent mechanism of decreasing MRPI expression was not related to cytokines.

Our study was performed on placentas delivered from diet-managed GDM women. Oral hypoglycemic agents are used in pregnancy very carefully because of the risk of hypoglycemia in the newborns. Oral antihyperglycemic agent glyburide (sulfonyurea derivative), can easily bind with proteins and is actively displaced by P-gp, BCRP, MRP3 and MRP1 from placenta to the maternal circulation [17, 33]. MRPI was shown to be mainly associated with the transport of glyburide, while BCRP and P-gp of metformin. Different antidiabetic agents used in the combination therapy (glyburide, metformin,rosiglitazone) and transferred by the same transporter can compete with one another. Such competition results in an increase of drug concentrations in fetal circulation [33].

Conclusion

In conclusion, changes in ABC transport protein localization in the human placenta, related to GDM, were indistinct. The changes in transporter protein expression, namely weaker MRPI and MDR3 positive reaction in syncytiotrophoblast, slightly lower expression of P-gp in decidual and amniotic epithelial cells, and MDR3 in the amniotic epithelium, were much more distinct. These changes should be confirmed by protein quantification. Basal syncytiotrophoblast transporters: MRPI and MDR3 seem to be more sensitive to GDM-specific environment than apical proteins, what may result in biodisposition of both, endogenous substrates and drugs.

Acknowledgments

This work was supported by the institutional grants from the Medical University of Silesia: no. KNW-1-072/D/1/0 and KNW-1-007/D/2/0.
2. Piotr Czekaj - współautor: koncepcja, założenia, metoda, manuskrypt, protokół, analiza i interpretacji danych, korekta i aktualizacja literatury, korekta i akceptacja ostatecznego kształtu manuskryptu, współfinansowanie pracy – autor zgłaszający i odpowiedzialny za manuskrypt.

3. Danuta Plewka - współautor metod oraz analizy danych, korekta i aktualizacja literatury, wykonanie badań immunohistochemicznych.

4. Jerzy Sikora - współautor założeń i protokołu, zebranie materiału, konsultacja danych klinicznych, ostateczna weryfikacja i akceptacja manuskryptu

Źródło finansowania:
Praca była finansowana ze środków na finansowanie badań uczestników studiów doktoranckich; umowa numer: KNW-1-072/D/1/0 i KNW-1-007/D/2/0.

Konflikt interesów:
Autorzy nie zgłaszają konfliktu interesów oraz nie otrzymali żadnego wynagrodzenia związanego z powstawaniem pracy.

References