Placental examination with dye injections in post-delivery chorionicity assessment in dichorionic triplet pregnancy

Technika iniekcji naczyniowej w poporodowej ocenie kosmówkowości w trojacznej ciąży dwukosmówkowej

Michał Lipa¹, Dorota A. Bomba-Opoń¹, Iwona Szymusik¹, Katarzyna Kosińska-Kaczyńska¹, Robert Brawura Biskupska Samaha¹, Piotr Węgrzyń², Mirosław Wielgoś¹

¹ I Katedra i Klinika Położnictwa i Ginekologii, Warszawski Uniwersytet Medyczny, Warszawa, Polska
² Klinika Położnictwa i Perinatologii Warszawski Uniwersytet Medyczny, Warszawa, Polska

Abstract

The incidence of spontaneous triplet pregnancy is approximately 1 in 7000 deliveries. Due to the fact that every presentation of a triplet and higher order pregnancy is associated with high rate of morbidity and preterm delivery, chorionicity and amnionicity remain significant predictive factors which determine specific management throughout the pregnancy. Ultrasound chorionicity assessment in triplet pregnancies is more complex than in twins, and in many cases it remains unknown.

We present a case report of a 24-year-old primipara in a spontaneous dichorionic triplet pregnancy, qualified for a cesarean section at 33 weeks of gestation, with subsequent placental examination with dye injections and post-delivery chorionicity assessment.

Key words: monochorionic twins / chorionicity / triplet pregnancy / placenta / examination

Streszczenie

Ciąże trojaczne występują z częstością 1 na 7000 urodzeń. W związku z tym, że każdy typ ciąży mnogiej, w tym trojaczej, koreluje z wysoką śmiertelnością i odsieczą porodów przedwczesnych, kosmówkowość i owodniowość pozostają ważnymi czynnikami prognozy, którymi są, w przypadku ciąż trojacznych, determinujące postępowanie w trakcie ciąży. Ultrasonograficzna ocena kosmówkowości w ciążach trojacznych jest bardziej złożona niż w bliźniaczych, a w wielu przypadkach pozostaje nieznana.

Prezentujemy przypadek dwukosmówkowej ciąży trojacznej u 24-letniej pierworódki rozwiązanej drogą cesarską w 33 tygodniu ciąży wraz z oceną kosmówkowości na podstawie poporodowego badania lożyka z wykorzystaniem techniki iniekcji naczyniowych.

Słowa kluczowe: bliźniata jednokosmówkowe / kosmówkowość / ciąż trojaczna / badanie lożyka

Adres do korespondencji:
Dorota A. Bomba-Opoń
I Katedra i Klinika Położnictwa i Ginekologii, Warszawski Uniwersytet Medyczny
Plac Starynkiewicza 1/3, 05-080 Warszawa, Polska
Tel./fax.: + 48 22 583 03 01
e-mail: dbomba@wum.edu.pl

Otrzymano: 28.08.2015
Zakceptowano do druku: 05.10.2015
Introduction

The incidence of spontaneous triplet pregnancy is about 1 in 6500-7000 deliveries (ranging from 6500 to 10000) [1]. Despite significant advances in the field of perinatology and neonatology, triplet pregnancies remain to be at a 90% risk of preterm delivery and severe prematurity, impaired long-term neurodevelopment, and high morbidity [2]. Due to the fact that every triplet gestation is at higher risk as compared to twins, chiorionicity and amnionicity remain significant predictive factors of varying perinatal outcomes. There are three main presentations of triplets: trichorionic (three fetuses with three distinct placentas; TCT), dichorionic (monochorionic twins coexist with a single fetus with a separate placenta; DCT), and monochorionic (three fetuses share a common chorionic plate; MCT) [3]. According to Spencer et al., mean gestational age of the fetuses at delivery is lower if more triplets share the same placenta. MCT and DCT are associated with higher rates of adverse pregnancy outcomes as compared to TCT, mainly due to the risk of intrauterine demise, discordant growth of the fetuses as the result of unequal placental territory share, or imbalanced blood flow in inter-twin anastomoses [4]. Precise assessment of the chiorionicity in triplet pregnancies is more complex as compared to twins. In monochorionic and trichorionic triplets, chiorionicity evaluation remains clear as fetuses share a common placenta or are attached to three separate ones. On the other hand, identification of the monochorionic pair in dichorionic triplet pregnancy may not be precisely performed. We present a case report of a post-delivery placental examination with dye injections and chiorionicity assessment in a spontaneous dichorionic triplet pregnancy.

Case report

A 24-year-old primipara in a spontaneous triplet pregnancy, complicated by pregnancy induced hypertension (PIH) and hypothyroidism, was referred to the Twin Pregnancy Out-Patient Clinic at 16 weeks of gestation with suspicion of a dichorionic trimniotic triplet pregnancy. Although the primary diagnosis was confirmed in post-delivery examination, chiorionicity of the triplets remained unclear throughout the pregnancy. Cervical pesary, intravaginal progesterone and steroids were administered due to high risk of preterm delivery. Prenatal ultrasound surveillance included serial biometric measurements of the fetuses, amniotic fluid volumes assessment and Doppler waveforms analysis of umbilical artery (UA), ductus venosus (DV), and middle cerebral artery (MCA). According to ultrasound examination at 31+4 weeks, the estimated fetal weights (EFW) corresponded to 10.9, 65.6 and 10.0 percentiles. The patient was scheduled for an elective caesarean section at 33 weeks of gestation due to brain sparing in the fetus with the lowest estimated weight (CPR= 1.08 <5th percentile); cerebroplacental ratio). Three viable premature female newborns were delivered in discordant general condition: 1380 grams and Apgar score of 7/9 points (newborn I), 1670 grams and Apgar score of 8/9 (newborn II), and 1210 grams and Apgar score of 5/5 (newborn III) at 1 and 5 minutes. Due to prematurity-related complications, the newborns were transferred to a neonatal intensive care unit (NICU).

During the caesarean section, each of the umbilical cords was clamped to mark the delivery order. After the delivery, the placentas were stored for a subsequent examination. Umbilical vessels were catheterized and injected with dyes to analyze the vascular structure (veins were injected with red and yellow dye, and arteries were injected with blue and green). In the process of digital analysis, the placental angio-architecture including inter-twin anastomoses, was determined. The placental territory was calculated and the results were correlated with neonatal data.

The post-delivery examination revealed that all three placentas were fused together, and detached spontaneously. The total weight of the placentas was 940 grams. The cord insertions were: velamentous, marginal and marginal, respectively to the delivery order. Each umbilical cord consisted of two umbilical arteries and a single umbilical vein. The post-delivery examination with dye injections revealed monochorionicity of fetus I and fetus III, and a separate chorionic plate of fetus II (Figure 1). Monochorionic twins were delivered in discordant general condition (7-9 and 5-5 points according to Apgar scale) and birth weight (1380 vs. 1210 grams; discordance 13.7%). Computer analysis with adjusted scale revealed monochorionic placental territory share of

Figure 1. Complete placental mass after post-delivery examination with dye injections. Arteries catheterized and injected with blue and green, veins with red and yellow dye. Arrows indicating every fetus` placenta (fetus II = yellow; fetus I = red; fetus III = blue).

Figure 2. Velamentous cord insertion of the newborn I located in the central part of the placental mass.
49.7 % (I) vs. 50.3% (III). The first fetus had an atypical velamentous cord insertion located in the central part of the fused placenta and the second monochorionic twin had a marginal cord insertion. Issues associated with ultrasound choriocytic assessment throughout pregnancy could have originated from the volume and location of the velamentous cord insertion of newborn I (Figure 2). Dye injection revealed inter-twin anastomoses: 1 arterio-arterial (AA), 9 arterio-venous (AV), and 2 veno-venous (VV) (Figure 3). Postnatal serum morphology parameters of the monochorionic fetuses were: WBC 9.0*10^3 u/l, RBC 4.48*10^6 u/l, HGB 18.7 g/dl, HCT 54.3% (fetus I) and WBC 6.7*10^3 u/l, RBC 3.85*10^6 u/l, HGB 15.9 g/dl, 46.4% (fetus III). Both twins developed respiratory distress syndrome (RDS) and sepsis after the delivery. The fetus attached to a separate choriocytic plate was characterized by the highest birth weight (1680 grams) and the best perinatal outcome (transient respiratory dysfunction). The morphology parameters were: WBC 13.3*10^3 u/l, RBC 5.04*10^6 u/l, HGB 18.8 g/dl, HCT 55.3%. After 6 weeks, all infants were discharged from the NICU and currently remain under care of a pediatric out-patient clinic.

Discussion

In the era of assisted reproductive technique (ART), the number of multiple pregnancies has increased by over 400% [5]. That unexpected growth is the reason why significant amount of attention has been given to in vitro fertilization (IVF) procedures in infertility treatment centers, as multiple pregnancies remain one of the undesired complications. Some authors report that triplet pregnancies require 4-times higher costs than singletons and almost 75% of triplets require admission to neonatal intensive care units (NICUs) [6]. More strict policy regarding the number of the transferred embryos and the dosage of drugs administered for induction of the ovulation may have resulted in a decreased incidence of triplet gestations reported in the latest studies [7]. Although most of triplet and higher order pregnancies are attributed to ART, about 15-30% of triplets may be associated with more advanced maternal age at the time of spontaneous conception [8]. Moreover, ART increases the risk of monochorionicity about 7-8 times in multiple pregnancies [9].

Chorionicity and amniocytic are significant predictive factors in triplet pregnancies. Precise ultrasound examination implies specific management in the prenatal surveillance, as each presentation is associated with distinct perinatal outcomes. A retrospective analysis undertaken by Chaveeva et al., revealed that miscarriage and preterm delivery rates were lower in the TCT group as compared to the DCT group managed expectantly (3% and 35% vs. 9% and 45%, respectively) [10]. On the other hand, a cohort study performed by Kawaguchi et al., showed no significant differences in perinatal death rates between TCT and DCT [11]. Nonetheless, TCT is associated with lower risk of an adverse pregnancy outcome as compared to DCT [9]. Unfortunately, specificity of the choriocytic assessment decreases throughout the pregnancy. In cases with incomplete evaluation in the early first trimester, the precise diagnosis may not be possible in pregnancy. A multicenter study of triplet pregnancy outcomes by Morikawa et al., revealed that chorionicity remained unknown in almost 27% of triplet pregnancies (87 out of 320) [12]. Due to the fact that chorionicity assessment in triplet pregnancy is infinitely more complex than in twins, we were encouraged to perform a post-delivery placental examination with dye injections to confirm the primary diagnosis and determine the placental type for each fetus.

The presence of inter-twin anastomoses in every monochorionic pregnancy may be associated with imbalanced blood flow between the fetuses and remain the origin of the twin-to-twin transfusion syndrome (TTTS) or selective intrauterine growth restriction (sIUGR). Although TTTS and sIUGR are widely known from monochorionic twin pregnancies, both may affect monochorionic triplets as well. TTTS affects about 9% of monochorionic twins, whereas selective intrauterine growth restriction (sIUGR), defined as birth weight discordance of >25%, may affect up to 12.5-36% of the gestations [13]. On the other hand, the incidence of these phenomena in monochorionic triplets remains unknown. According to various studies, placental territory share and the characteristics of inter-twin vascular anastomoses (type and diameter) determine the morbidity, intrauterine growth, and long-term neurodevelopment of the fetuses. In twins with significant discordance in placental sharing, the diameter of anastomoses and blood exchange are increasing to reduce the impact on the birthweight discordance [14]. In our case, dye injections in the post-delivery examination revealed a separate placenta of fetus II (1670 grams and in the best general condition) and monochorionicity of fetuses I and III with 1 arterio-arterial (AA), 9 arterio-venous (AV) and 2 veno-venous (VV) inter-twin anastomoses. The territories in the monochorionic placenta were similar (49.7% vs. 50.3%) and the discordance in birth weights was approximately 13.7% (1380 vs. 1210 grams). Moreover, identification of the monochorionic pair potentially may have one more clinical aspect, i.e. the analysis of serum hemoglobin concentrations.
and the exclusion of the twin-anemia-polyhydramnios syndrome (TAPS), which affects the circulatory systems of monochorionic twins without amniotic fluid discordance [15]. In our case, the difference between postnatal serum hemoglobin concentrations in monochorionic pair was 2.8 g/dl (18.7 vs. 15.9 g/dl), and did not fulfill the TAPS criteria.

Conclusions

Placental examination with dye injections may be a useful technique for postnatal chorionicity assessment in multiple pregnancies, especially in triplets and high-order multiples.

References