open access

Vol 4, No 4 (2018)
Prace poglądowe
Published online: 2019-02-12
Get Citation

The role of T lymphocytes in the pathogenesis of systemic sclerosis and new therapeutic perspectives

Olga Gumkowska-Sroka, Przemysław Jacek Kotyla
DOI: 10.5603/FR.2018.0010
·
Forum Reumatologiczne 2018;4(4):212-218.

open access

Vol 4, No 4 (2018)
Prace poglądowe
Published online: 2019-02-12

Abstract

Systemic sclerosis is a chronic, systemic connective tissue disease, the pathogenesis of which includes, interalia, abnormalities of the immune system with both innate and adaptive responses. Many scientific studies indicate the key role of T cells in the pathogenesis of the disease. A better understanding of these mechanisms creates the possibility of new therapeutic interventions.

Forum Reumatol. 2018, tom 4, nr 4: 212–218

Abstract

Systemic sclerosis is a chronic, systemic connective tissue disease, the pathogenesis of which includes, interalia, abnormalities of the immune system with both innate and adaptive responses. Many scientific studies indicate the key role of T cells in the pathogenesis of the disease. A better understanding of these mechanisms creates the possibility of new therapeutic interventions.

Forum Reumatol. 2018, tom 4, nr 4: 212–218

Get Citation

Keywords

systemic sclerosis; T lymphocytes; biological treatment

About this article
Title

The role of T lymphocytes in the pathogenesis of systemic sclerosis and new therapeutic perspectives

Journal

Forum Reumatologiczne

Issue

Vol 4, No 4 (2018)

Pages

212-218

Published online

2019-02-12

DOI

10.5603/FR.2018.0010

Bibliographic record

Forum Reumatologiczne 2018;4(4):212-218.

Keywords

systemic sclerosis
T lymphocytes
biological treatment

Authors

Olga Gumkowska-Sroka
Przemysław Jacek Kotyla

References (38)
  1. Kowal-Bielecka O, Kuryliszin-Moskal A. Twardzina układowa. Reumatologia. 2012; 50(2): 124–129.
  2. Jimenez SA, Derk CT. Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis. Ann Intern Med. 2004; 140(1): 37–50.
  3. Zuber JP, Spertini F. Immunological basis of systemic sclerosis. Rheumatology (Oxford). 2006; 45 Suppl 3: iii23–iii25.
  4. Kalogerou A, Gelou E, Mountantonakis S, et al. Early T cell activation in the skin from patients with systemic sclerosis. Ann Rheum Dis. 2005; 64(8): 1233–1235.
  5. Sakkas LI, Chikanza IC, Platsoucas CD. Mechanisms of Disease: the role of immune cells in the pathogenesis of systemic sclerosis. Nat Clin Pract Rheumatol. 2006; 2(12): 679–685.
  6. Sakkas LI, Platsoucas CD. Is systemic sclerosis an antigen-driven T cell disease? Arthritis Rheum. 2004; 50(6): 1721–1733.
  7. Gołab J, Kamiński R. Dojrzewanie limfocytów. . In: Gołab J, Jakóbisiak M, Lasek W, Stokłosa T. ed. Immunologia. Wydawnictwo Naukowe PWN, Warszawa 2008: 153–171.
  8. Ptak W, Ptak M, Szczepanik M. Limfocyty B i T oraz ich subpopulacje. In: Podstawy immunologii. PZWL, Warszawa 2017.
  9. Ptak W, Ptak M, Szczepanik M. Odporność komórkowa mediowana przez limfocyty T CD4+ Th1 i ICD8+ Tc. In: Podstawy immunologii . PZWL, Warszawa 2017.
  10. Kalogerou A, Gelou E, Mountantonakis S, et al. Early T cell activation in the skin from patients with systemic sclerosis. Ann Rheum Dis. 2005; 64(8): 1233–1235.
  11. Klein S, Kretz CC, Ruland V, et al. Reduction of regulatory T cells in skin lesions but not in peripheral blood of patients with systemic scleroderma. Ann Rheum Dis. 2011; 70(8): 1475–1481.
  12. Prescott RJ, Freemont AJ, Jones CJ, et al. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992; 166(3): 255–263.
  13. Sakkas LI, Xu B, Artlett CM, et al. Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol. 2002; 168(7): 3649–3659.
  14. Johnson KL, Nelson JL, Furst DE, et al. Fetal cell microchimerism in tissue from multiple sites in women with systemic sclerosis. Arthritis Rheum. 2001; 44(8): 1848–1854.
  15. Szaryńska M. Mikrochimeryzm płodowo- matczyny i jego znaczenie kliniczne. Post Biol Kom. 2007; 34: 85–102.
  16. Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol. 2011; 300(5): G723–G728.
  17. O'Reilly S, Hügle T, van Laar JM. T cells in systemic sclerosis: a reappraisal. Rheumatology (Oxford). 2012; 51(9): 1540–1549.
  18. Higashi-Kuwata N, Makino T, Inoue Y, et al. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. Exp Dermatol. 2009; 18(8): 727–729.
  19. Barsotti S, Bruni C, Orlandi M, et al. One year in review 2017: systemic sclerosis. Clinical and Experimental Rheumatology. 2017.
  20. Kaviratne M, Hesse M, Leusink M, et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol. 2004; 173(6): 4020–4029.
  21. Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999; 103(6): 779–788.
  22. Rankin AL, Mumm JB, Murphy E, et al. IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol. 2010; 184(3): 1526–1535.
  23. Barsotti S, Stagnaro C, Della Rossa A, et al. Systemic sclerosis: a critical digest of the recent literature. Clin Exp Rheumatol. 2015; 33(Suppl 91): S3–S14.
  24. Parel Y, Aurrand-Lions M, Scheja A, et al. Presence of CD4+CD8+ double-positive T cells with very high interleukin-4 production potential in lesional skin of patients with systemic sclerosis. Arthritis Rheum. 2007; 56(10): 3459–3467.
  25. Atamas SP, Yurovsky VV, Wise R, et al. Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum. 1999; 42(6): 1168–1178.
  26. Medsger TA, Ivanco DE, Kardava L, et al. GATA-3 up-regulation in CD8+ T cells as a biomarker of immune dysfunction in systemic sclerosis, resulting in excessive interleukin-13 production. Arthritis Rheum. 2011; 63(6): 1738–1747.
  27. Sato S, Hasegawa M, Takehara K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci. 2001; 27(2): 140–146.
  28. Krasimirova E, Velikova T, Ivanova-Todorova E, et al. Treg/Th17 cell balance and phytohaemagglutinin activation of T lymphocytes in peripheral blood of systemic sclerosis patients. World J Exp Med. 2017; 7(3): 84–96.
  29. Almanzar G, Klein M, Schmalzing M, et al. Disease Manifestation and Inflammatory Activity as Modulators of Th17/Treg Balance and RORC/FoxP3 Methylation in Systemic Sclerosis. Int Arch Allergy Immunol. 2016; 171(2): 141–154.
  30. Truchetet ME, Brembilla NC, Montanari E, et al. Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res Ther. 2011; 13(5): R166.
  31. Slobodin G, Ahmad MS, Rosner I, et al. Regulatory T cells (CD4(+)CD25(bright)FoxP3(+)) expansion in systemic sclerosis correlates with disease activity and severity. Cell Immunol. 2010; 261(2): 77–80.
  32. Radstake TR, van Bon L, Broen J, et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFbeta expression. PLoS One. 2009; 4(6): e5981.
  33. Mendoza FA, Mansoor M, Jimenez SA. Treatment of Rapidly Progressive Systemic Sclerosis: Current and Futures Perspectives. Expert Opin Orphan Drugs. 2016; 4(1): 31–47.
  34. Asano Y. Recent advances in the treatment of skin involvement in systemic sclerosis. Inflamm Regen. 2017; 37: 12.
  35. Baron M. Targeted Therapy in Systemic Sclerosis. Rambam Maimonides Med J. 2016; 7(4).
  36. Ciechomska M, van Laar J, O'Reilly S. Current frontiers in systemic sclerosis pathogenesis. Exp Dermatol. 2015; 24(6): 401–406.
  37. Fukasawa C, Kawaguchi Y, Harigai M, et al. Increased CD40 expression in skin fibroblasts from patients with systemic sclerosis (SSc): role of CD40-CD154 in the phenotype of SSc fibroblasts. Eur J Immunol. 2003; 33(10): 2792–2800.
  38. Inomata M, Nishioka Y, Azuma A. Nintedanib: evidence for its therapeutic potential in idiopathic pulmonary fibrosis. Core Evid. 2015; 10: 89–98.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl