Comparative topographic analyses on the foramen magnums of two hystricomorphs — the crested porcupine (Hystrix cristata) and greater cane rat (Thryonomys swinderianus). Implications for typology, phylogeny and evolution in rodents

Authors: Michael Oluwale Samuel, Nathaniel Wanmi, James Oopade

DOI: 10.5603/FM.a2019.0083
Article type: ORIGINAL ARTICLES
Submitted: 2019-02-13
Accepted: 2019-04-01
Published online: 2019-07-17

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Comparative topographic analyses on the foramen magnums of two hystricomorphs — the crested porcupine (*Hystrix cristata*) and greater cane rat (*Thryonomys swinderianus*). Implications for typology, phylogeny and evolution in rodents

Elliptical descriptor analysis of structures

Michael O. Samuel¹, Nathaniel Wanmi,¹ James Olopade²

¹Department of Veterinary Anatomy Federal University of Agriculture Makurdi, Nigeria

²Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria

Address for correspondence: Dr. M.O. Samuel, Department of Veterinary Anatomy, Federal University of Agriculture Makurdi, Benue state, Nigeria, e-mail, walesamuel10@gmail.com

Abstract

This investigation aims to assess species comparison of foramen magnums in two hystricomorphs and endeavors an inter-species categorization of individual shape outline. This study utilized thirty-five (35) skull samples of different ages from the crested porcupine (*H. cristata*) (17) and the greater cane rat (*T. swinderianus*) (18) through Elliptical Fourier Analysis, and: the two-block Partial Least Squares analysis Elliptical Fourier Descriptor analyses presented marked amplitude related attenuations according to harmonics factor (1/10 to 2,980) in *T. swinderianus* though angular orientations in the major axis were not profoundly affected by size-normalization in this species but up-regulated in *H. cristata*; (1/10 to 1/95). Within and between groups analyses revealed PC1&2 contributed 98.94% and 1.06% but 100% PC1 between groups. The 1ˢᵗ to 4ᵗʰ harmonics gave full topographic description of the foramen magnums in both, 1ˢᵗ-3ʳᵈ harmonics details compared differently revealing shape variance concentrated in posterolateral and posterior regions of the foramen magnum in the porcupine but antero-lateral and dorsal in cane rats, components of
morphological asymmetry were demonstrated from 6th-12th harmonics. Stepwise discriminant
analysis of harmonic increments and Mahalanobis distance exposed increasing disparities between
both up to the 5th harmonic (Bonferroni-corrected P-values (277.2, P<0.002) group centroids) and a
slightly lower value in variance for cane rats (0.421) and (0.378) for porcupines. A (58.3% and
33.3%); (94.1% and 11.1%) proportion before and after size-normalized evaluations of porcupines
and cane rats Size factor removal yielded 35.8% increase in accuracy among crested porcupines but
22.2% decline in cane rats. Dimorphic variations were less frequently expressed in cane rats
corresponding to 33.3% and 44.2%. Size normalization effect brought a reverse situation with an
increased difference (11.1% in T. swinderianus; 5.9% in H. cristata). Individual specimen
distribution along discriminant axis pooled by discriminant scores depicted less morphologic
variability with greater overlaps. We observe that complexities in foramen magnum architecture
between these indicates parcellation of shape and size variance and contributes as evidence for
structural evolution, systematics, fundamental similarities and differences offers an explanation that
both are related through evolutionary process of descent as baseline data and further support the
suggestion; hystricidae in phylogenetic tree are better evolved and separate from thryonomidae.

Key words: integration, modularity, foramen magnum, morphology, hystricomorpha

INTRODUCTION

The Non-flat topography of the foramen magnum as a solid structure may be evaluated by
model parametrization through Elliptical Fourier analysis (EFA) with regards to its peculiar scalar
anisotropy and employed in discriminating among organism population.

Rodential species in Hystricomorpha group correctly comprises the Hystricidae (Porcupines),
Bathyergidae (Sand-diggers), Thryonomydae (Grasscutters) and Petromuridae (African rock-rats)
with the Phiomydis (African teotary) as common tribe group. The crested African porcupine (Hystrix
cristata) are more widely distributed in Sub-Saharan Africa, Italy and North America (Angelici and
Luiselli (2003) compared to a more geographically restricted Cane rats found exclusively in Africa
single species; Thryonomys, most of the species, subspecies and breeds described may be aligned to
one of the following groups: *T. swinderianus* (the larger/greater grasscutter) and *T. gregorianus* (the smaller grasscutter) (Hautier et al. 2015).

Form and function have been shown to be present and correlated in shape change as adaptation to specific ecologies in a widespread range of organismal traits (Hutchinson 2012; Randau and Goswami 2018). The foramen magnum by its diverse morphology holds vital keys on skull topologic characterization among species (Fayolle et al. 1982) but also presents peculiar challenges in its anatomic profiling (Janeczek et al. 2011). Diversity in mammals is most represented in rodents, with astonishing ecomorphological diversification related to different locomotor types (cursorial, terrestrial, scansorial, arboreal and fossorial) and neurological functions (Musser & Carleton 2005; Kay & Hoekstra, 2008; Hautier et al. 2015). From functional perspectives, studies on the foramen magnum can provide insights into the selective pattern operating during early ontogeny which ultimately determine the adult form of an organism (Herrel et al. 2008). This may help to understand systematic position in taxa, this structure is characterized by highly derived anatomical features more so that size and shape architecture presents important individual variations which demonstrate phylogenetic convergence in taxon (DeLahunta 1983). The development of the foramen magnum depends largely on genetic composition, ecology and diet. Morphological variations in individuals especially open and dorsal notches has been linked to neuropathologic manifestations though without any certainty (Janeczek et al. 2011).

Importantly, different zygomasseteric conditions obtainable in rodents are not biomechanically equivalent and may enable rodents to be more efficient at different diet types. Hystricomorphy (possession of a large infraorbital foramen in Ctenohystrica + Anomaluromorph + Dipodidae) through which the medial masseter passes as seen in Jerboas, porcupines and Capybaras (Pares-Casanova 2017) favoring efficient molar chewing whereas myomorphs are well adapted to all feeding modes and generates efficient incisor gnawing which may impact on occipital area morphology (Fabre et al. 2017),

Recent works has shown that these ecologically-driven shape changes, though mostly concentrated in the cranium, morphometric studies in this regard have played important roles in resolving taxonomic problems (Cardini & Thorington 2006). In comparison to studies in felids, it has been demonstrated that with skull and limbs measurements it was possible to correctly discriminate between species’ Existing relevant works includes, Angelici and Luiselli (2003) who studied morphometric variations on the skull of the Italian crested porcupine (*Hystrix cristata*), Parés-Casanova (2017) on *Hydrochoerus hydrochaeris*
More specifically our aim is to test the following hypotheses

1. Size influences subterranean shape differences between these species in ontogeny and allometric perspectives
2. Species follow distinct phenotypic patterns of skull components shape changes in relation to broad phylogenic distances.
3. There are no significant discriminations in subterranean shape and size for the foramen types in both species.

In this study we describe the morphology of the foramen magnums in two populations of hystricomorpha in order to characterize putative specializations by comparing the anatomy of this structure in \textit{H. cristata} to its closely related family member \textit{T. swinderianus}. relating it to morphophysiology of locomotion and neurology in both species using the Elliptic Fourier descriptors (EFA) in description of complex outlines as used by Urbanova (2010) in which homology of landmarks are not important while details of shape outlines may be explained geometrically. The current investigation analyses of EFA descriptors of foramen magnum outlines employed variation-covariation by step-wise reconstructions in separate species groups irrespective of sex bias with contributions of principal components of the coefficients to assign quantities (Iwata and Ukai (2002), compare both inter individual, interspecies variability and evaluate ontogeny. Here we test for shape and size covariations between the foramen magnums of the crested Porcupine and the Greater cane rat related to phylogenetic constraints.

MATERIALS AND METHODS

\textbf{Skull acquisition and categorization}-For the purpose of this study twenty (20) skull samples in equal composition and of different ages from the crested porcupine (\textit{H. cristata}) and the greater cane rat (\textit{T. swinderianus}) were obtained from around the same area (south-western region of Nigeria); a west African sub-region. Samples included for this investigation consist of complete skulls without apparent pathologies and were selected irrespective of sex. Some of these are from collections from the College of Veterinary Medicine, Federal University of Agriculture Makurdi, Benue State, Nigeria.

\textbf{Foramen magnum outlines extraction}- Using a digital camera (Canon® EOS equipped with EF-S 1200D, 18-55 IS 11 Kit, Hama tripod with plumb and stabilizer) in a direct focal plane, photographic images were taken in a direct caudal view of skulls without mandibles in place (fig. 1)
at a constant DIN of 25cm to a central point on the foramen magnum. Transparent tracing paper with cartesian co-ordinates was placed on captured images represented on the x, y co-ordinates. Based on Freeman encoding which allows us to represent edges in a numerical data structure which can be manipulated algebraically for extracting the EFD. Images were processed in Microsoft paint as 24-bit depth BMP pictures at 2179 x 430 pixels specified for SHAPE chain coder (chain coder/Freeman edge encoding utilizes a coding system in the description of geometrical information about contours/closed shapes numbered 0-7) program software package for 2-D quantification and evaluation of biological shapes recognition and visualization. It binarizes a full color picture to black and white, in a clock-wise (y-x) directions the scanned outline tracings were digitally processed and data on foramen magnum outline contours were produced as cartesian co-ordinates (x, y) on a scale of 50mm (Iwata and Ukai (2002); Urbanova (2010).

By using the geometric morphometric approach, variation in form can be captured and the allometric and non-allometric components can be disentangled (Zelditch et al (2012). To perform this analysis, we used Elliptical Fourier Analysis, and: the two-block Partial Least Squares (PLS) analysis (Kuhl and Giardina, (1982); Iwata and Ukai (2002); Bookstein et al (2003) developed for assessing covariation among divergent datasets (fig. 2). Other analytical precautions were taken to ascertain the reliability of our results, including assessing the repeatability of the covariance matrices under resampling (Melo et al (2016).

Elliptic Fourier sequences- In the classical elliptical Fourier approach (Kuhl and Giardina (1982) the previous parametric functions x(t) and y(t), describing the outline gives the expansion of the sequences as follows

\[x(t) = a_0 + \sum_{j=1}^{k} a_j \cos\left(\frac{2j \pi t}{T}\right) + \sum_{j=1}^{k} b_j \sin\left(\frac{2j \pi t}{T}\right) \]

and

\[y(t) = c_0 + \sum_{j=1}^{k} c_j \cos\left(\frac{2j \pi t}{T}\right) + \sum_{j=1}^{k} d_j \sin\left(\frac{2j \pi t}{T}\right) \]

\((a_j, b_j)\) and \((c_j, d_j)\) were the four Fourier coefficients defining each harmonic \((j^{th}\) order); \(k\) corresponds to the maximum number of harmonics used for the Fourier decomposition and \(T\) was equal to the perimeter of the outline. The coefficients of elliptic Fourier descriptors can be mathematically normalized to be invariant to size, rotation and starting point of the contour trace. In SHAPE, the coefficients can be normalized by two types of procedures; one based on the ellipse of the first harmonic and the other based on the longest radius. For detailed information about the normalization, see Kuhl and Giardina (1982).
Size normalization of foramen outlines coefficients- A recalculation of descriptors after size normalization of foramen magnum outlines to be invariant of size was done based on first ellipse (first harmonic) using Chc 2-NEF SHAPE vers. 1.3 for obtaining the EFD descriptors values for the enclosed area in all samples evaluated (Iwata and Ukai (2002). Here four (4) new descriptors were described for every harmonic in both species as follows

Major axis length/2;
Minor axis length/2;
Orientation of the major axis
Angle of phase corresponding to the position of the first point of the ellipse (θ=1/2 arct.2(a1b1+c1d1)/a1²+c1²-b1²-c1²)

Elliptical Fourier reconstructions-Stepwise reconstructions of foramen magnum outlines were carried out with incremental harmonics number employing descriptors derived from EFD. Each harmonic ellipse was further evaluated by its size (Major axis length/2 x Minor axis length/2) as well as by anisotropy peculiar to each of them (Major axis/Minor axis) (Buck, 1962) where A_n, B_n, C_n and D_n are representing descriptors for the number of harmonics where n= number of harmonics.

Visualizing grid vectors displacement configurations, Principal component and statistical analysis- Visual contributions of principal components of shape edge/outline coefficient descriptors analyses of foramen magnums of *H. cristata* and *T. swinderianus* was depicted with MorphoJ vers. 1.60 with grid-wire. Descriptors coefficients were analyzed with ‘PrinComp’ based on Variance-Covariance matrix of normalized coefficients. It is also noted that such coefficients with small variance and covariation values do not significantly explain morphological variations and are now calculated and used in deriving the principal components bearing all information concerning edge/contour shapes in the first 12 harmonics (Rhoff and Archie (1984). Statistical analysis of this EFA data was done with Paleontological statistics (PAST) version 3.0 (Hammer et al., 2013) employing summary statistics (mean ± SD) for descriptors. A species-based discriminant analysis with incremental harmonics in FD numbers, significance of the discriminant functions was assessed with Bonferroni post-test statistics and level of significance set at 0.05 and compared with the phylogenetic hierarchy (fig. 3) diagram for confirmation.

Supplementary material for review Validation of repeatability and measurement error

Measurements readings were taken as replicas at each run and recorded, a two-way Nonparametric multivariate analysis (NPMANOVA) at 9,999 permutations of both datum replica with Gower
distances showed no significant values (F=1.933, P=0.36) therefore indicating high repeatability while an interclass correlation (ICC) (0.96) indicated low influence of measurement error.

RESULTS

Summary statistics and species-based quantitative analysis of EFD- Tables 1-3 shows the contributions of the first 12 harmonics of edge/contour for (17) H. cristata and (18) T. swinderianus and for size-normalized outlines, magnitude with the peculiar anisotropy of their ellipses. Fourier coefficients a1, b1 and c1 d1 are the constant normalized descriptors. Number of analyzed harmonics for covariance is 14.

The series of increment in harmonics demonstrated a general gradual decline in major and minor axis lengths/2 in both species after an initial increase up to the 4th and 3rd harmonics irrespective of species and respectively (Tables 1 and 2). Similar trends occurred in their elliptical magnitude values; in H. cristata this follows as earlier described decreasing through the first four harmonics, the 5th and 7th followed no particular order whereas T. swinderianus shows great disparity in this regard as it fluctuates in magnitude with values inferior to those in the crested porcupine (Table 3). From the 6th and 4th harmonics in H. cristata and T. swinderianus respectively these descriptors present values which are inferior or equal to 1% of the 1st harmonic values (Table 2).

The magnitudes of the ellipses assumed similar proportions earlier in the 5th and 2nd harmonics in both species respectively (Table 3).

Orientations of Major axis corresponding to the third descriptor in both species (between 2.13 to 271) is not associated with any harmonic order but characteristic of both (Table 2).

In Table 3, the elliptical anisotropy (1.35 to 100) was characteristic of each harmonic in the species but did not represent any harmonic order.

Descriptor values revealed in size-normalization results for the species showed marked amplitude related attenuations according to harmonics factor about (1/10 to 2,980) especially in T. swinderianus though angular orientations values of the elliptical major axis were not so affected by size-normalization in this species but rather up-regulated in H. cristata according to harmonics (factor around 1/10 to1/95).
Topographic analyses of the stepwise reconstructions of the foramen magnum morphology in \textit{H. cristata} and \textit{T. swinderianus}

The 1st to 12th harmonics step-wise reconstructions of the foramen magnums of \textit{H. cristata} and \textit{T. swinderianus} shown in Fig. 5 demonstrated better accuracy with increasing harmonic number as revealed in their fit indices shown visually by the representation (reconstructed vs the original values) Fig. 6. Out of 52 (fifty-two) analyzed principal component coefficients for both species comprised of 12 analyzed harmonics in \textit{H. cristata} and \textit{T. swinderianus} and a total variance of 2.705687E-002 and 1.218013E-002 respectively (Supplementary info. Table 4), the first four Principal components effectively elucidated the topography of the foramen magnums in the two species.

A within and between groups analysis revealed PC1&2 contributed 98.94\% and 1.06\% of the variance within groups but 100\% PC1 between groups. (fig. 4a and b (H. cristata (green) T. swinderianus (red)). By the 3rd and 4th harmonics in \textit{H. cristata} and \textit{T. swinderianus} respectively a full anatomical description was achieved on the foramen magnums of these species under investigation and finer details on the structure was clearly explained by the 12th. The inner outlines were the first to be defined by PC1 from a caudal view with the use of the 1st harmonic in reference to a central point in both type samples, the dorsal notch and right dorso-lateral condylar rims were topographically elucidated in crested porcupines but at variance in cane rat samples where the 1st harmonic explained left lateral condyle in clockwise direction by PC1. Taking a right ventro-lateral clockwise direction the 2nd harmonic described the left condylar rim and the ventral limits, whereas in cane rat samples it variably explained the right dorso-lateral condylar rims in \textit{T. swinderianus}. (fig. 5 and 7). The 3rd harmonics detailed its ventral limits of convergence and at variance with \textit{H. cristata}'s left lateral rims. Components of morphological asymmetry was demonstrated from the 6th -12th harmonics between both species.

Evaluation of species differences and polymorphism

A stepwise discriminant analysis of harmonics increments and Mahalanobis distance revealed increasing disparities between the species up to the 5th harmonics (fig. 6), after this harmonic further discrimination in evaluation became insignificant. The principal components contributions in the structure under investigation in both species shown in (Supp. Info. Table 4a and b and fig. 7) as well
as the first six reconstructions (fig. 5) for *H. cristata* and *T. swinderianus*. An insignificant Mahalanobis distance difference remained after size normalization of foramen outlines (0.45, P<0.64) after a discriminant elliptical Fourier descriptors evaluation as well as the Mahalanobis distance between species group centroids with Bonferroni-corrected P-values (277.2, P<0.002). The cane rat demonstrated a slightly lower variance (0.421) in its variance co-variance matrix than the crested porcupines (0.378). 10th harmonics.

A 58.3% and 33.3% proportion of *H. cristata* and *T. swinderianus* individual samples respectively in the population presented significant polymorphism in the foramen magnum structural outline and was 94.1% and 11.1% after size-normalized evaluation (tables 5 and 6). Size factor removal yielded a 35.8% increase in accuracy in crested porcupines but a 22.2% decline in greater cane rat. Dimorphic variations in foramen magnum outlines was less frequently expressed by *T. swinderianus* than in *H. cristata*, this was found marginally significant and corresponded to 33.3% in *T. swinderianus*; 44.2% in *H. cristata*), size normalization effect brought the reverse situation with an increased difference (11.1% in *T. swinderianus*; 5.9% in *H. cristata*).

Individual species specimen (y) distribution along the discriminant (x) axis when pooled according to discriminant scores depicted in (fig. 9a and b) for foramen magnum outlines and for size-normalized outlines respectively. This diagram demonstrates vividly both the topographical anatomy and morphological variability possible between the crested porcupines and greater cane rats by such distribution. Species discrimination was less in size-normalized outlines but with greater overlap between them.

DISCUSSION

Choice of EFA methods for structural closed shape outline data decomposition-Rigorous shape analyses on solid structures is imperative when a necessity to distinguish species that differ in ecology, particularly regarding either prey size or locomotor style (Meachen-Samuels and Van Valkenburgh (2009a, b); Meachen-Samuels and Van Valkenburgh (2012) arise as in the current investigation to precisely topographically characterize the foramen magnum of two members of the same family in a caudal aspect with peculiar and often complex signatures to be biologically deciphered. Elliptical Fourier analysis introduces scientific perspectives with ecological and anthropological interests in characterization of foramen magnum outlines (Samuel et al 2017) and
could be of forensic value. Polymorphism analysis, a phenomenon referred to as alternative phenotype and related to biodiversity, genetic and adaptation (Drummond and Rambaut (2007); Alvarez et al (2013) is further facilitated by this procedure.

The ease of connection with interpretations of geometry distinguishes the EFA from the classical Fourier co-efficients (LeMinor and Schmittbuhl (1999) through its unique capacity to quantify closed shape outlines irrespective of its complexity, its step by step reconstruction permits easy evaluation of the four elliptical descriptors its geometric details and morphologic inputs of every Elliptical Fourier harmonics (LeMinor and Schmittbuhl (1999), such inputs is then translated biologically to specific anatomic patterns. The 1st to 5th harmonics illustrates the general shape of foramen magnum outlines in both species whereas the later harmonics (6th to 12th) depicts finer characteristic details of the structure (fig. 5). It becomes possible to both quantify and clearly appreciate a convergence of result consequent to increase in harmonics as demonstrated by the fit index.

Reproducibility of the research methodology stems from relative ease of access to developed software packages for compatible personal computers facilitating image data processing from above 1,713 sample points on each specimen may suggest an enhanced accuracy, data compression and interpretation for analysis which can be moved from place to place and encourages quick dissemination for collaborating researchers.

Inter-specific discrimination in foramen magnum phylogenic and evolution—Recent studies have shown that cranial, dental and limb traits successfully separate species (Meachen-Samuels and Van Valkenburgh (2009a, b); Meachen-Samuels (2012), indicating both size and shape factors are vital traits peculiar to each rodent taxon from diverging ecologies (Alvarez et al (2013). Cranial topologic investigations among species are numerous in literature for evaluating skull typologies, taxa radiation and evolution (Vilela et al (2009); Bornert et al (2011) as documented in molecular phylogenies and karyotypical evidence relating the Chaetomys skull closely to Erethizontidae rather than to the Echimyidae, despite occupying a relatively basal phylogenetic position compared to the rest (Vilela et al (2009). The high levels of molecular and morphological divergence suggested Chaetomys belongs to an early radiation of the Erethizontidae (Vilela et al (2009).

The rather inconspicuous location of the foramen magnum in the caudo-basal portion of skulls presents species-specific architectural challenges in quantitative and qualitative dimorphic and evolutionarily disparate or similar attributes Cornette et al (2012). Little or no comparative studies
on this structure exist in literature for a between and within (hystricognathi) variabilities important for foramen magnum characterization and categorization in rodent systematics. Phenotypic characteristics in both species’ foramen magnum showed inter-specific dissimilarities consistent with existing works (Ruth et al 2016; Samuel et al 2017) and attributable to morphologic evolutionary interactions, these characteristics does not differentiate both on basis of bipedality or quadrupedality (locomotion) (Charlesworth 20130; Ruth et al 2016) but may indeed predict foramen magnum angle (FMA) reported to be dependent on auditory bulla size (Ruth et al 2016), Fabre et al (2017); this has not been prior reported in the current family under study. The crested porcupines presented a squarer outline and a relatively more robust construction with prominent condylar rims while the greater cane rats; are more cylindrical, with dorsal and ventral notches and a less elevated occlusive condyles (Janeczek et al 2011). A notable distinguishing qualitative feature of the foramen magnum is the dorsal and ventral notches in H. cristata and T. swinderianus respectively described and studied by (DeLahunta 1983); Rusbridge and Knowler (2006) in other species. The similar features observed in both’ structures is postulated to demonstrate phylogenetic affinity by their architectural convergence (Cardini 2003; 2006) while the dissimilar may be attributed to integrative and modularity processes which are substrates in evolutionary processes in rodents (Cardini 2003)

Elliptical Fourier methods utilized in the current investigation permits a demonstration of significant monomorphic/dimorphic features in both species but at a higher proportion in H. cristata (41.2% table 5) T. swinderianus presented a slight reduction in this regard (33.3%) and could be attributed to usage of all information contained in the foramen magnum outline (1,713 retained sample points), the older metric method at best will yield incomplete morphological results. Non-discriminated proportion of samples observed could only be accounted for by further studies to determine sampling error, inadequate performance of applied method or a true inter-specific similarity of their foramen magnums and representative of biological trend.

Topographic components in comparative interspecific foramen magnum outlines morphology in Phylogeny- Size and shape are substrates to forms in foramen magnum outlines and precise individual signatures peculiar to species and those which are dimorphic represent a morphological challenge. Size factors are most useful in intraspecific sexual-size dimorphism while both size and shape elements give detailed topologic description of the considered structure (Calcagno 1981; Cornette et al 2012). Fig. 3 and 8 revealed a relative phylogenetic position of the species under study in the hystricognathi sub-family tree. It is admitted that higher species in the phylogeny tree of a group demonstrate better evolved body structures (Hallgrimson et al 2002; 2004). Outside size-
normalization i.e. size and shape components of foramen magnum outlines; 58.3% and 66.7% are similar in the crested porcupines and cane rats outline respectively, they are significantly dimorphic and dissimilar (41.2%, 33.3% in the same order) in both size and shape components in accordance with our second hypothesis. The organization of the foramen magnum in the studied samples seem to be segregated along ecological and dietary lines since the greater cane rat must of necessity rotate the head forcefully to achieve complete severance and shredding of plant fibers (Asibey (1974) suggesting a prominently developed foramen magnum lateral condyles though further studies in this direction may be necessary to confirm this observation. A constructed phylogenetic tree showing the most parsimonious trees by the branch and bound algorithm with a strict consensus of their average shapes by the Procrustes distance showed close similarity in clustering pattern and tree length (0) (fig. 10).

Functional perspectives in comparative assessments of foramen magnum outlines during ontogeny between H. cristata and T. swinderianus- Ontogenetic changes in foramen magnum growth is associated with development in the presence of directionality from historical earlier to later time and from younger to older organisms (Drake and Klingenberg (2008); Weisensee and Jantz (2011). Evidence for its structural evolution explains the fundamental similarities between these species and have a straightforward explanation in the idea that both are related through an evolutionary process of descent from a common ancestor as observed in the house mouse (Mus musculus) (Auffray et al (1996), Marmots (Sciuridae) (Cardini (2003); Ivanovic et al (2007), Salamanders (Triturus spp.) (Weisensee and Jantz (2011); Hautier et al (2015) and the subfamily Caviomorpha (Alvarez et al (2013). As reported in other rodents the form of the posterior neurocranium might exert a constraint on the position of the brainstem thereby increasing the chances of cerebellar protrusion indicated by volume reduction of the posterior fossa (Ruth et al (2016). Furthermore, syringomyelia and neurological disorders remains potent with observations of open and dorsal notches; occurrences frequently associated with captive breeding and domestication attempts (Faber et al (2017), the concepts on which the fields of integration (i.e., the overall covariation of traits) and modularity (i.e., the relative autonomy of integrated structures, which are termed modules, from other structures) have been based (Olsen and Miller (1958). Allometric variations with growth in H. cristata populations suggested 0.17% proportions (<1%) demonstrated appreciable ontogenic similarity changes whereas wide size variations (99%) occurred in this sampled population (table 2). T. swinderianus had about 1.55% (≈2%) of its samples showing similarity in their sizes, hence wide functional differences exist with growth in both species demonstrating selective patterning with age variations (Hallgrimson et al

Ethical statement-

(i) **Compliance with ethical standards**- The authors of this manuscript sought and obtained the permissions of the ethical committee of the College of Veterinary Medicine, Federal University of Agriculture Makurdi, Benue State (CVM/FUAM/EC/022.2018)

(ii) **Funding**- this investigation received no external funding supports and was a collaborative effort of the co-authors

(iii) **Conflict of interest statement**- The authors declare no conflict of interests

(iv) **Ethical approval**- ethical committee of the College of Veterinary Medicine, Federal University of Agriculture Makurdi, Benue State (CVM/FUAM/EC/022.2018)

(v) Informed consent- The corresponding author obtained informed consent of the co-authors before this submission

REFERENCES

5. Bornert F. Choquet P. Gros CI. Aubertin G. Perrin-Schmitt F. Clauss F. Lesot, F. Constantinesco A. Schmittbuhl N. Subtle morphological changes in the mandible of Tabby
mice revealed by micro-CT imaging and elliptical Fourier quantification. Frontiers in Physiology, 2011; vol.2 art.15;1

32. Meachen-Samuels JA. & Van Valkenburgh B. Radiographs reveal exceptional forelimb strength in the saber tooth cat, Smilodon fatalis. PLoS One, 2012; (7); e11412. https://doi.org/10.1371/journal.pone.0011412 PMID: 2062539

38. Randau M. Goswami A. Shape Covariation (or the Lack Thereof) Between Vertebrae and Other Skeletal Traits in Felids: The Whole is Not Always Greater than the Sum of Parts Evol. Biol. 2018; https://doi.org/10.1007/s11692-017-9443-6

40. Rusbridge C. Knowler SP. Coexistence of occipital dysplasia and Occipital hypoplasia/syrngomelia in cavalier King Charles Spaniel. J. small. Ani. Prac. 2006; 47;603-6

42. Samuel OM. Pares-Casanova PM. Olopade JO. Elliptical Fourier descriptors of outline and morphological analysis in caudal view of foramen magnum of the tropical racoon (Procyon cancrivorus) (Linnaeus, 1758) Morpho. 2017; http://dx.doi.org/10.1016/j.morpho.2017.06.001
43. Urbanova, P. VyuziTi meTod geOmeTricke mOFOmeTrie v BiOLOgii clOvekA A PriduzeNycH OBOrecH masarykova univerzita Prirodovedecka faculta HABiliTAcni Prace Brno. 2010; Pp, 24-30

Table 1 Species based *H. cristata* and *T. swinderianus* foramen magnum edge/contour in caudal view Elliptical Fourier descriptors for the first 12 harmonics in summary (17 *H. cristata* and 18 *T. swinderianus*)

<table>
<thead>
<tr>
<th>Harmonics</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Major axis length/2 ±SD</td>
<td>Minor axis length/2 ±SD</td>
<td>Orientation of Major axis (º)</td>
<td>Major axis length/2 ±SD</td>
<td>Minor axis length/2 ±SD</td>
<td>Orientation of Major axis (º)</td>
</tr>
<tr>
<td>1</td>
<td>44.21±0.81</td>
<td>4.07±0.53</td>
<td>31.66±0.09</td>
<td>45.43±0.44</td>
<td>40.33±0.58</td>
<td>17.93±0.04</td>
</tr>
<tr>
<td>2</td>
<td>40.68±0.66</td>
<td>40.11±0.62</td>
<td>19.77±0.24</td>
<td>48.11±0.50</td>
<td>41.72±0.44</td>
<td>14.81±0.03</td>
</tr>
<tr>
<td>3</td>
<td>50.66±0.73</td>
<td>48.09±0.84</td>
<td>15.23±0.15</td>
<td>51.55±0.28</td>
<td>52.11±0.39</td>
<td>24.07±0.08</td>
</tr>
<tr>
<td>4</td>
<td>54.22±0.89</td>
<td>43.00±2.04</td>
<td>6.59±0.17</td>
<td>50.91±0.50</td>
<td>51.75±0.35</td>
<td>216.48±0.10</td>
</tr>
<tr>
<td>5</td>
<td>46.77±1.68</td>
<td>35.24±2.69</td>
<td>2.13±0.38</td>
<td>51.51±0.42</td>
<td>43.82±3.04</td>
<td>47.18±0.88</td>
</tr>
<tr>
<td>6</td>
<td>26.1±2.98</td>
<td>17.02±2.03</td>
<td>202.71±0.79</td>
<td>47.32±3.00</td>
<td>37.61±3.46</td>
<td>40.14±0.15</td>
</tr>
<tr>
<td>7</td>
<td>17.55±0.58</td>
<td>15.31±0.53</td>
<td>30.23±0.06</td>
<td>25.81±3.36</td>
<td>22.44±2.63</td>
<td>39.50±0.32</td>
</tr>
<tr>
<td>8</td>
<td>22.22±2.19</td>
<td>21.22±2.56</td>
<td>17.97±0.11</td>
<td>15.35±1.38</td>
<td>14.85±1.38</td>
<td>121.84±0.41</td>
</tr>
<tr>
<td>9</td>
<td>24.91±2.73</td>
<td>20.37±2.04</td>
<td>14.31±0.69</td>
<td>13.61±0.20</td>
<td>15.05±0.44</td>
<td>86.51±0.10</td>
</tr>
<tr>
<td>Harmonics</td>
<td>Major axis length/2 ±SD</td>
<td>Minor axis length/2 ±SD</td>
<td>Orientation of Major axis (°)</td>
<td>Major axis length/2 ±SD</td>
<td>Minor axis length/2 ±SD</td>
<td>Orientation of Major axis (°)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>5.80±0.16</td>
<td>4.31±0.04</td>
<td>321.88±640.50</td>
<td>4.72±0.51</td>
<td>4.00±0.43</td>
<td>5.23±3.33</td>
</tr>
<tr>
<td>2</td>
<td>5.66±0.06</td>
<td>4.83±0.08</td>
<td>298.69±622.67</td>
<td>0.21±0.12</td>
<td>0.10±0.03</td>
<td>61.37±49.15</td>
</tr>
<tr>
<td>3</td>
<td>5.31±0.01</td>
<td>4.82±0.005</td>
<td>148.66±411.72</td>
<td>0.30±0.01</td>
<td>0.03±0.01</td>
<td>209.86±97.07</td>
</tr>
<tr>
<td>4</td>
<td>4.91±0.02</td>
<td>4.72±0.02</td>
<td>147.60±280.68</td>
<td>0.04±0.02</td>
<td>0.04±0.03</td>
<td>88.10±29.78</td>
</tr>
<tr>
<td>5</td>
<td>0.21±0.01</td>
<td>0.11±0.01</td>
<td>201.99±642.15</td>
<td>0.01±0.01</td>
<td>0.03±0.01</td>
<td>51.51±71.06</td>
</tr>
<tr>
<td>6</td>
<td>0.01±0.01</td>
<td>0.03±0.02</td>
<td>118.46±162.82</td>
<td>0.004±0.002</td>
<td>0.001±0.01</td>
<td>44.97±71.66</td>
</tr>
<tr>
<td>7</td>
<td>0.11±0.01</td>
<td>0.01±0.01</td>
<td>49.58±49.81</td>
<td>0.003±0.004</td>
<td>0.004±0.005</td>
<td>217.26±166.24</td>
</tr>
<tr>
<td>8</td>
<td>0.02±0.005</td>
<td>0.01±0.01</td>
<td>45.77±177.82</td>
<td>0.02±0.00</td>
<td>0.007±0.003</td>
<td>271.23±245.02</td>
</tr>
<tr>
<td>9</td>
<td>0.02±0.004</td>
<td>0.01±0.01</td>
<td>26.36±65.95</td>
<td>0.004±0.002</td>
<td>0.007±0.002</td>
<td>110.42±66.40</td>
</tr>
<tr>
<td>10</td>
<td>0.01±0.01</td>
<td>0.03±0.01</td>
<td>37.06±59.46</td>
<td>0.007±0.001</td>
<td>0.005±0.002</td>
<td>26.20±32.70</td>
</tr>
<tr>
<td>11</td>
<td>0.02±0.005</td>
<td>0.00±0.005</td>
<td>94.91±39.07</td>
<td>0.004±0.002</td>
<td>0.003±0.001</td>
<td>89.63±52.36</td>
</tr>
<tr>
<td>12</td>
<td>0.01±0.005</td>
<td>0.01±0.004</td>
<td>18.25±28.24</td>
<td>0.005±0.001</td>
<td>0.009±0.001</td>
<td>51.61±67.32</td>
</tr>
</tbody>
</table>

Table 2. Species-based size-normalized *H. cristata* and *T. swinderianus* foramen magnum edge/contour in caudal view Elliptical Fourier descriptors for the first 12 harmonics in summary (17 *H. cristata* and 18 *T. swinderianus*)

<table>
<thead>
<tr>
<th>Harmonics</th>
<th>Major axis length/2 ±SD</th>
<th>Minor axis length/2 ±SD</th>
<th>Orientation of Major axis (°)</th>
<th>Major axis length/2 ±SD</th>
<th>Minor axis length/2 ±SD</th>
<th>Orientation of Major axis (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.69±0.34</td>
<td>22.51±0.40</td>
<td>62.78±0.05</td>
<td>15.72±0.49</td>
<td>12.43±0.22</td>
<td>45.68±0.10</td>
</tr>
<tr>
<td>11</td>
<td>21.24±0.37</td>
<td>20.44±0.50</td>
<td>31.97±0.03</td>
<td>17.97±0.49</td>
<td>14.17±0.44</td>
<td>45.23±0.07</td>
</tr>
<tr>
<td>12</td>
<td>29.80±0.93</td>
<td>28.51±0.43</td>
<td>28.30±0.05</td>
<td>28.12±0.20</td>
<td>21.95±0.69</td>
<td>45.23±0.15</td>
</tr>
</tbody>
</table>

Table 3. Species-based size-normalized *H. cristata* and *T. swinderianus* foramen magnum edge/contour in caudal view showing magnitude and anisotropy of the ellipses for the first 12 harmonics in summary (17 *H. cristata* and 18 *T. swinderianus*)
<table>
<thead>
<tr>
<th>Harmonics</th>
<th>(H. \text{cristata}) Elliptical magnitude ±SD</th>
<th>(H. \text{cristata}) Elliptical anisotropy ±SD</th>
<th>(T. \text{swinderianus}) Elliptical magnitude ±SD</th>
<th>(T. \text{swinderianus}) Elliptical anisotropy ±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.00±0.88</td>
<td>1.35</td>
<td>18.88±0.45</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>27.34±0.12</td>
<td>1.17</td>
<td>0.021±0.04</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>25.59±0.07</td>
<td>1.10</td>
<td>0.009±0.02</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>23.17±0.05</td>
<td>1.04</td>
<td>0.002±0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>0.02±0.04</td>
<td>1.91</td>
<td>0.0003±0.01</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>0.0003±0.02</td>
<td>0.33</td>
<td>0.000004±0.01</td>
<td>4.0</td>
</tr>
<tr>
<td>7</td>
<td>0.001±0.01</td>
<td>11.0</td>
<td>0.000012±0.01</td>
<td>0.75</td>
</tr>
<tr>
<td>8</td>
<td>0.0002±0.005</td>
<td>2.0</td>
<td>0.00014±0.003</td>
<td>2.86</td>
</tr>
<tr>
<td>9</td>
<td>0.00008±0.003</td>
<td>5.0</td>
<td>0.000028±0.002</td>
<td>0.57</td>
</tr>
<tr>
<td>10</td>
<td>0.0003±0.005</td>
<td>3.3</td>
<td>0.000035±0.002</td>
<td>1.4</td>
</tr>
<tr>
<td>11</td>
<td>0.0002±0.006</td>
<td>2.0</td>
<td>0.000012±0.002</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>0.0001±0.003</td>
<td>1.0</td>
<td>0.000045±0.002</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Table 4. Eigen values and proportions in (a) *H. cristata* and (b) *T. swinderianus* species respectively showing coefficients whose percentage proportion values are greater than 1

(a) Eigen value Proportion (%) Cumulative (%) > 1/52
PC1 1.071018E-002 39.5840 39.5840 *
PC2 6.919805E-003 25.5750 65.1590 *
PC3 4.691780E-003 17.3404 82.4994 *
PC4 2.179807E-003 8.0564 90.5558 *
PC5 1.075084E-003 3.9734 94.5293 *
PC6 6.385191E-004 2.3599 96.8892 *
PC7 2.842671E-004 1.0506 97.9398
(b) Eigen value Proportion (%) Cumulative (%) > 1/52

PC1 4.998755E-003 41.0402 41.0402 *
PC2 2.776223E-003 22.7930 63.8333 *
PC3 1.721639E-003 14.1348 77.9681 *
PC4 1.073403E-003 8.8127 86.7808 *
PC5 4.629293E-004 3.8007 90.5815 *
PC6 4.344384E-004 3.5668 94.1483 *
PC7 2.150538E-004 1.7656 95.9139
PC8 1.459105E-004 1.1979 97.1118

Table 5. Results of dimorphic classifications procedure of the size-normalized foramen magnum outlines performed from the Elliptical Fourier descriptors (17 *H. cristata* and 18 *T. swinderianus*)

<table>
<thead>
<tr>
<th>Species group</th>
<th>No. of Individuals</th>
<th>Individuals classified as H. cristata</th>
<th>Individuals classified as T. swinderianus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>H. cristata</td>
<td>17</td>
<td>10</td>
<td>58.3</td>
</tr>
<tr>
<td>T. swinderianus</td>
<td>18</td>
<td>6</td>
<td>33.3</td>
</tr>
</tbody>
</table>

Table 6. Results of dimorphic classifications procedure of the size-normalized foramen magnum outlines performed from the Elliptical Fourier descriptors (17 *H. cristata* and 18 *T. swinderianus*)
<table>
<thead>
<tr>
<th>Species group</th>
<th>No. of Individuals</th>
<th>Individuals classified as H. cristata</th>
<th>Individuals classified as T. swinderianus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>H. cristata</td>
<td>17</td>
<td>16</td>
<td>94.1</td>
</tr>
<tr>
<td>T. swinderianus</td>
<td>18</td>
<td>2</td>
<td>11.1</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

Figure 1. skulls of the Crested Porcupine (*H. cristata*) and Greater cane (*T. swinderianus*) rat in caudal view showing the foramen magnum.

Figure 2 showing Elliptical Fourier sequences of co-ordinates descriptors of contours (x, y) as expanded by Dixon et al., 1997 and permits description of an outline through series of harmonics; the geometry of each harmonic corresponds to an ellipse.

Figure 3. showing phylogenetic hierarchy of the hystricomorpha, the old-world porcupines (Hystricidae) position relative to the cane rats (Thryonomidae) courtesy Darren Naish; http://blogs.scientificamerican.com/tetrapod-zoology

Figures 4a and b showing a comparative within and between groups principal component analysis with convex hulls at 95% ellipses in *H. cristata* and *T. swinderianus* species foramen magnum; PC1&2 contributed 98.94% and 1.06% (within) and PC1 100% (between) respectively.

Figure 5 Foramen magnum outlines in *H. cristata* and *T. swinderianus* reconstructions for the first eighteen (18) harmonics (overlapped reconstructions= -2std=yellow, mean=green, +2std=red)

Figure 6. Fit diagram of *H. cristata* and *T. swinderianus* dissimilarity analysis of the foramen magnum outlines with harmonics increment calculated from discriminant analysis and Mahalanobis distance

Figure 7. Grid wire visual representation of comparative Principal components 1&2 contributions of foramen magnum contour outlines in *H. cristata* and *T. swinderianus* aligned by principal axis for the first 14 harmonics
Figure 8. Phylogeny of the Hystricomorpha. Distribution of the single pair of interstitial-NOR-bearing chromosomes as a character in the phylogeny of Hystricomorpha based on published data herein presented courtesy;(Mammalogy; Largomorpha, macroscelidea, RODENTIA-EEOB625, 2004) Blue branches indicate lineages with interstitial NORs. Yellow branches indicate lineages with terminal NORs. Blue circles indicate taxa with one pair bearing interstitial NORs. Yellow circles indicate taxa with one or more pairs bearing terminal NORs.

Figure 9a and b Analysis of polymorphism of the foramen magnum outline in caudal view. Showing distribution pattern of discriminant scores resulting from discriminant analysis of the elliptical Fourier descriptors with standard deviation and 95% interval in a centralized axis bar chat (b) for size-normalized foramen magnum outlines (17 H. cristata and 18 T. swinderianus specimens)

Figure 10 Parsimony analysis after samples to events (UA to RASC) using only FADS with Branch-and bound algorithm (Wagner optimization) showing most parsimonious tree (MPT=1) out of 2173623 evaluated, number of trees stored (10,000), tree length (0), b consensus tree
\[x(t) = a_0 - \sum_{j=1}^{k} a_j \cos \left(\frac{2j\pi t}{T} \right) + \sum_{j=1}^{k} b_j \sin \left(\frac{2j\pi t}{T} \right) \]

and

\[y(t) = c_0 - \sum_{j=1}^{k} c_j \cos \left(\frac{2j\pi t}{T} \right) + \sum_{j=1}^{k} d_j \sin \left(\frac{2j\pi t}{T} \right) \]
Hystricomorpha/
Ctenohystrica/
Entodacrya

Hystricognathi

gundis (Ctenodactylidae)

Old World porcupines
(Hystricidae)

chinchillas, cavies,
capybaras etc
(Caviomorpha)

African mole-rats
or blesmols
(Bathyergidae)

dassie rats
(Petromuridae)

cane rats
(Thryonomyidae)