open access

Ahead of Print
Original article
Submitted: 2023-03-16
Accepted: 2023-04-05
Published online: 2023-04-20
Get Citation

Thoracolumbar fascia in the lumbar region: anatomical description and topographical relationships to the cutaneous nerves: a preliminary study

Wojciech Przybycień1, Krzysztof Balawender2, Jerzy Walocha1, Ewa Mizia1, Michał Bonczar13, Patryk Ostrowski13, Michał Golberg4, Anna Smędra5, Edward Clarke6, Andrzej Żytkowski78
Affiliations
  1. Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
  2. Department of Normal and Clinical Anatomy, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
  3. Youthoria, Youth Research Organization, Krakow, Poland
  4. Department of Histology and Embryology, Chair of Anatomy and Histology, Medical University of Lodz, Poland
  5. Chair and Department of Forensic Medicine, Medical Faculty, Medical University of Lodz, Poland
  6. Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Poland
  7. Faculty of Philology, Department of Polish Dialectology and Logopedics, University of Lodz, Poland
  8. Norbert Barlicki Memorial Teaching Hospital No. 1 of the Medical University of Lodz, Poland

open access

Ahead of Print
ORIGINAL ARTICLES
Submitted: 2023-03-16
Accepted: 2023-04-05
Published online: 2023-04-20

Abstract

Background: The study aims to determine principal topographical relations between thoracolumbar fascia (TLF) and lateral branches derived from the dorsal (posterior) rami of lumbar spinal nerves and elucidate their potential link to lumbar region pain. The research protocol involves basic TLF morphological description, evaluating its relation to the nerves, and examining general histology. Materials and methods: The research was conducted on four male cadavers fixed in 10% neutral buffered formalin. Results: The dorsal rami of the spinal nerves branched into medial and lateral divisions. The lateral divisions were about 1 mm thick and mainly visible in the subcutaneous tissue during stratigraphic dissection. They pierced the TLF superficial layer. They descended sidewards and downwards within the superficial fascia (laterally to the erector spinae muscle) to provide sensory innervation to the skin. Conclusions: Anatomical relationships between TLF, deep (intrinsic or true) back muscles, and dorsal rami of the spinal nerves are complex and may be clinically involved in low back pain etiopathogenesis.

Abstract

Background: The study aims to determine principal topographical relations between thoracolumbar fascia (TLF) and lateral branches derived from the dorsal (posterior) rami of lumbar spinal nerves and elucidate their potential link to lumbar region pain. The research protocol involves basic TLF morphological description, evaluating its relation to the nerves, and examining general histology. Materials and methods: The research was conducted on four male cadavers fixed in 10% neutral buffered formalin. Results: The dorsal rami of the spinal nerves branched into medial and lateral divisions. The lateral divisions were about 1 mm thick and mainly visible in the subcutaneous tissue during stratigraphic dissection. They pierced the TLF superficial layer. They descended sidewards and downwards within the superficial fascia (laterally to the erector spinae muscle) to provide sensory innervation to the skin. Conclusions: Anatomical relationships between TLF, deep (intrinsic or true) back muscles, and dorsal rami of the spinal nerves are complex and may be clinically involved in low back pain etiopathogenesis.

Get Citation

Keywords

fascia, innervation, musculoskeletal system, spinal nerves, thoracolumbar fascia, topographical anatomy

About this article
Title

Thoracolumbar fascia in the lumbar region: anatomical description and topographical relationships to the cutaneous nerves: a preliminary study

Journal

Folia Morphologica

Issue

Ahead of Print

Article type

Original article

Published online

2023-04-20

Page views

581

Article views/downloads

687

DOI

10.5603/FM.a2023.0032

Pubmed

37144847

Keywords

fascia
innervation
musculoskeletal system
spinal nerves
thoracolumbar fascia
topographical anatomy

Authors

Wojciech Przybycień
Krzysztof Balawender
Jerzy Walocha
Ewa Mizia
Michał Bonczar
Patryk Ostrowski
Michał Golberg
Anna Smędra
Edward Clarke
Andrzej Żytkowski

References (26)
  1. Benjamin M, Benjamin M, Kaiser E, et al. Structure-function relationships in tendons: a review. J Anat. 2008; 212(3): 211–228.
  2. Bogduk N, Wilson AS, Tynan W. The human lumbar dorsal rami. J Anat. 1982; 134(Pt 2): 383–397.
  3. Fascia MeSH Descriptor Data 2023. https://meshb.nlm.nih.gov/record/ui?ui=D005205 (16.02.2023).
  4. Golberg M, Wysiadecki G, Kobos J, et al. Application of automated immunohistochemistry in anatomical research: a brief review of the method. Transl Res Anat. 2022; 28: 100211.
  5. Haładaj R, Wysiadecki G, Macchi V, et al. Anatomic variations of the lateral femoral cutaneous nerve: remnants of atypical nerve growth pathways revisited by intraneural fascicular dissection and a proposed classification. World Neurosurg. 2018; 118: e687–e698.
  6. Harbell MW, Seamans DP, Koyyalamudi V, et al. Evaluating the extent of lumbar erector spinae plane block: an anatomical study. Reg Anesth Pain Med. 2020; 45(8): 640–644.
  7. Iwanaga J, Simonds E, Schumacher M, et al. Anatomic study of superior cluneal nerves: revisiting the contribution of lumbar spinal nerves. World Neurosurg. 2019; 128: e12–e15.
  8. Ivanusic J, Konishi Y, Barrington MJ. A cadaveric study investigating the mechanism of action of erector spinae blockade. Reg Anesth Pain Med. 2018; 43(6): 567–571.
  9. Karl HW, Helm S, Trescot AM. Superior and middle cluneal nerve entrapment: a cause of low back and radicular pain. Pain Physician. 2022; 25(4): E503–E521.
  10. Kikuta S, Iwanaga J, Watanabe K, et al. Posterior sacrococcygeal plexus: application to spine surgery and better understanding low-back pain. World Neurosurg. 2020; 135: e567–e572.
  11. Kokar S, Ertaş A, Mercan Ö, et al. The lumbar erector spinae plane block: a cadaveric study. Turk J Med Sci. 2022; 52(1): 229–236.
  12. Kumka M, Bonar J. Fascia: a morphological description and classification system based on a literature review. J Can Chiropr Assoc. 2012; 56(3):179-91. J Can Chiropr Assoc. 2012; 56(3): 179–191.
  13. LeMoon K. Terminology used in Fascia Research. J Bodyw Mov Ther. 2008; 12(3): 204–212.
  14. Narozny M, Zanetti M, Boos N. Therapeutic efficacy of selective nerve root blocks in the treatment of lumbar radicular leg pain. Swiss Med Wkly. 2001; 131(5-6): 75–80.
  15. Payne R. Surgical exposure for the nerves of the back. In: Shabe Tubbs R. ed. Nerves and Nerve Injuries. Vol 2: Pain, Treatment, Injury, Disease and Future Directions. Academic Press, Cambridge 2015.
  16. Paracha U, Hendrix JM. Cluneal Neuralgia. StatPearls [Internet], Treasure Island (FL) 2022.
  17. Pivovarsky ML, Gaideski F, Macedo RM, et al. Immediate analgesic effect of two modes of transcutaneous electrical nerve stimulation on patients with chronic low back pain: a randomized controlled trial. Einstein (Sao Paulo). 2021; 19: eAO6027.
  18. Saito T, Yoshimoto M, Yamamoto Y, et al. The medial branch of the lateral branch of the posterior ramus of the spinal nerve. Surg Radiol Anat. 2006; 28(3): 228–234.
  19. Schoenfeldt J, Guffey R, Fingerman M. Cadaveric study investigating the mechanism of action of erector spinae blockade. Reg Anesth Pain Med. 2019 [Epub ahead of print].
  20. Standring S. Gray’s anatomy: the anatomical basis of clinical practice. Churchill Livingstone, London 2016: 831–832.
  21. Stecco A, Macchi V, Stecco C, et al. Anatomical study of myofascial continuity in the anterior region of the upper limb. J Bodyw Mov Ther. 2009; 13(1): 53–62.
  22. Tesarz J, Hoheisel U, Wiedenhöfer B, et al. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011; 194: 302–308.
  23. Willard FH, Vleeming A, Schuenke MD, et al. The thoracolumbar fascia: anatomy, function and clinical considerations. J Anat. 2012; 221(6): 507–536.
  24. Yahia LH, Pigeon P, DesRosiers EA. Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng. 1993; 15(5): 425–429.
  25. Ma YT. Neuroanatomy of Acu-Reflex Points. In: Ma YT. ed. Acupuncture for Sports and Trauma Rehabilitation. Churchill Livingstone, London 2011.
  26. Żytkowski A, Tubbs R, Iwanaga J, et al. Anatomical normality and variability: Historical perspective and methodological considerations. Transl Res Anat. 2021; 23: 100105.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.: +48 58 320 94 94, faks: +48 58 320 94 60, e-mail: viamedica@viamedica.pl