open access

Vol 83, No 1 (2024): Folia Morphologica
Original article
Submitted: 2022-12-31
Accepted: 2023-02-08
Published online: 2023-04-20
Get Citation

Topography of the mandibular canal in male human skulls originating from different time periods

Aleksandra Gawlikowska-Sroka1, Łukasz Stocki2, Jacek Szczurowski3, Wioletta Nowaczewska4, Małgorzata Światłowska-Bajzert5
·
Pubmed: 37144849
·
Folia Morphol 2024;83(1):168-175.
Affiliations
  1. Departament of Anatomy, Pomeranian Medical University, Szczecin, Poland
  2. Orion Dental Wawrzyniak & Stocki, Szczecin, Poland
  3. Department of Anthropology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
  4. Department of Human Biology, University of Wroclaw, Poland
  5. Department of Prosthetics, Pomeranian Medical University, Szczecin, Poland

open access

Vol 83, No 1 (2024): Folia Morphologica
ORIGINAL ARTICLES
Submitted: 2022-12-31
Accepted: 2023-02-08
Published online: 2023-04-20

Abstract

Background: Dynamic advances in dentistry, especially in implantology has inspired researchers to carry out many studies investigating the topography of the mandibular canal and its ethnic differences. The aim of the study was a comparative analysis of variations in the position and topography of the mandibular canal based on radiographic images of human mandibles originating from modern and medieval skulls.

Materials and methods: Morphometric examination of 126 radiographs of skulls (92 modern and 34 medieval skulls) was included. The age and sex of individuals were determined based on the morphology of the skull, the obliteration of cranial sutures, and the degree of tooth wear. To define the topography of the mandibular canal on X-ray images, we took 8 anthropometric measurements.

Results: We observed significant differences in several parameters. The distance between the base of the mandible and the bottom of the mandibular canal, the distance between the top of the mandibular canal and the crest of the alveolar arch, and the height of the mandibular body. Significant asymmetry was found for two parameters of mandibles from modern skulls: the distance between the top of the mandibular canal and the crest of the alveolar arch at the level of the second molar (p < 0.05), and the distance between the mandibular foramen and the margin of the anterior mandibular ramus (p < 0.007). There were no significant differences between measurements taken on the right and left sides of the medieval skulls.

Conclusions: Our study revealed differences in the position of the mandibular canal between modern and medieval skulls, confirming the presence of geographical and chronological differences between populations. Knowledge of variability in the position of the mandibular canal between different local populations is fundamental for the correct interpretation of findings from diagnostic radiological studies used in dental practice and in forensic odontology or analysis of archaeological bone materials.

Abstract

Background: Dynamic advances in dentistry, especially in implantology has inspired researchers to carry out many studies investigating the topography of the mandibular canal and its ethnic differences. The aim of the study was a comparative analysis of variations in the position and topography of the mandibular canal based on radiographic images of human mandibles originating from modern and medieval skulls.

Materials and methods: Morphometric examination of 126 radiographs of skulls (92 modern and 34 medieval skulls) was included. The age and sex of individuals were determined based on the morphology of the skull, the obliteration of cranial sutures, and the degree of tooth wear. To define the topography of the mandibular canal on X-ray images, we took 8 anthropometric measurements.

Results: We observed significant differences in several parameters. The distance between the base of the mandible and the bottom of the mandibular canal, the distance between the top of the mandibular canal and the crest of the alveolar arch, and the height of the mandibular body. Significant asymmetry was found for two parameters of mandibles from modern skulls: the distance between the top of the mandibular canal and the crest of the alveolar arch at the level of the second molar (p < 0.05), and the distance between the mandibular foramen and the margin of the anterior mandibular ramus (p < 0.007). There were no significant differences between measurements taken on the right and left sides of the medieval skulls.

Conclusions: Our study revealed differences in the position of the mandibular canal between modern and medieval skulls, confirming the presence of geographical and chronological differences between populations. Knowledge of variability in the position of the mandibular canal between different local populations is fundamental for the correct interpretation of findings from diagnostic radiological studies used in dental practice and in forensic odontology or analysis of archaeological bone materials.

Get Citation

Keywords

mandibular canal, palaeoanthropology, anatomy, mental foramen, asymmetry

About this article
Title

Topography of the mandibular canal in male human skulls originating from different time periods

Journal

Folia Morphologica

Issue

Vol 83, No 1 (2024): Folia Morphologica

Article type

Original article

Pages

168-175

Published online

2023-04-20

Page views

509

Article views/downloads

421

DOI

10.5603/FM.a2023.0030

Pubmed

37144849

Bibliographic record

Folia Morphol 2024;83(1):168-175.

Keywords

mandibular canal
palaeoanthropology
anatomy
mental foramen
asymmetry

Authors

Aleksandra Gawlikowska-Sroka
Łukasz Stocki
Jacek Szczurowski
Wioletta Nowaczewska
Małgorzata Światłowska-Bajzert

References (68)
  1. Al-Khateeb T, Al-Hadi Hamasha A, Ababneh KT. Position of the mental foramen in a northern regional Jordanian population. Surg Radiol Anat. 2007; 29(3): 231–237.
  2. Al-Siweedi SYA, Ngeow WC, Nambiar P, et al. A new classification system of trifid mandibular canal derived from Malaysian population. Folia Morphol. 2023; 82(2): 315–324.
  3. Angelopoulos C, Thomas SL, Hechler S, et al. Comparison between digital panoramic radiography and cone-beam computed tomography for the identification of the mandibular canal as part of presurgical dental implant assessment. J Oral Maxillofac Surg. 2008; 66(10): 2130–2135.
  4. Apinhasmit W, Methathrathip D, Chompoopong S, et al. Mental foramen in Thais: an anatomical variation related to gender and side. Surg Radiol Anat. 2006; 28(5): 529–533.
  5. Bernal V, Perez SI, Gonzalez PN, et al. Ecological and evolutionary factors in dental morphological diversification among modern human populations from southern South America. Proc Biol Sci. 2010; 277(1684): 1107–1112.
  6. Bishara SE, Burkey PS, Kharouf JG. Dental and facial asymmetries: a review. Angle Orthod. 1994; 64(2): 89–98, doi: 10.1043/0003-3219(1994)064<0089:DAFAAR>2.0.CO;2.
  7. Bjӧrk A, Bjӧrk L. Artificial deformation and crani-facial asymmetry in Ancient Peruvians. J Dent Res. 1964; 43(2): 356–362.
  8. Borghesi A, Bondioni MP. Unilateral triple mandibular canal with double mandibular foramen: cone-beam computed tomography findings of an unexpected anatomical variant. Folia Morphol. 2021; 80(2): 471–475.
  9. Brothwell DR. Digging up bones. Natural History Museum Publications, London 1981.
  10. Buikstra J, Ubelaker DH. Standards for data collection from human skeletal remains. Arkansas Archeological Survey Research, 1994, Series 44.
  11. Cawood JI, Howell RA. A classification of the edentulous jaws. Int J Oral Maxillofac Surg. 1988; 17(4): 232–236.
  12. Cawood JI, Howell RA. Reconstructive preprosthetic surgery. I. Anatomical considerations. Int J Oral Maxillofac Surg. 1991; 20(2): 75–82.
  13. Chrcanovic BR, Abreu MH, Custódio AL. Morphological variation in dentate and edentulous human mandibles. Surg Radiol Anat. 2011; 33(3): 203–213.
  14. Crawford JF. An interesting asymmetry in a mediaeval skull. Br Dent J. 1973; 134(11): 488–490.
  15. Cutright B, Quillopa N, Schubert W. An anthropometric analysis of the key foramina for maxillofacial surgery. J Oral Maxillofac Surg. 2003; 61(3): 354–357.
  16. El-Anwar MW, Khazbak AO, Hussein A, et al. Sphenopalatine foramen computed tomography landmarks. J Craniofac Surg. 2020; 31(1): 210–213.
  17. Eliades AN, Papadeli Ch, Tsirlis AT. Mandibular canal, foramina of the mandible and their variations: part II: the clinical relevance of the preoperative radiographic evaluation and report of five cases. Oral Surgery. 2015; 9(2): 85–93.
  18. Ferembach D, Schwindezky M, Stoukal M. Recommendations for age and sex diagnoses of skeletons. J Hum Evol. 1980; 9(7): 517–549.
  19. Galland M, Van Gerven DP, Von Cramon-Taubadel N, et al. 11,000 years of craniofacial and mandibular variation in Lower Nubia. Sci Rep. 2016; 6: 31040.
  20. Gawlikowska A, Szczurowski J, Czerwiński F, et al. Analysis of skull asymmetry in different historical periods using radiological examinations. Pol J Radiol. 2007; 72(4): 35–43.
  21. Gawlikowska-Sroka A. [Methods for the assessment of skull asymmetry on radiograms]. Ann Acad Med Stetin. 2009; 55(3): 36–39.
  22. Gawlikowska-Sroka A, Stocki Ł, Dąbrowski P, et al. Topography of the mental foramen in human skulls originating from different time periods. Homo. 2013; 64(4): 286–295.
  23. Gawlikowska-Sroka A, Szczurowski J, Kwiatkowska B, et al. Concha bullosa in paleoanthropological material. Adv Exp Med Biol. 2016; 952: 65–73.
  24. Gkantidis N, Tacchi M, Oeschger ES, et al. Third molar agenesis is associated with facial size. Biology (Basel). 2021; 10(7).
  25. Grayson BH, McCarthy JG, Bookstein F. Analysis of craniofacial asymmetry by multiplane cephalometry. Am J Orthod. 1983; 84(3): 217–224.
  26. Holmes MA, Ruff CB. Dietary effects on development of the human mandibular corpus. Am J Phys Anthropol. 2011; 145(4): 615–628.
  27. Hublin JJ, Ben-Ncer A, Bailey SE, et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature. 2017; 546(7657): 289–292.
  28. Hwang HS, Youn IS, Lee KH, et al. Classification of facial asymmetry by cluster analysis. Am J Orthod Dentofacial Orthop. 2007; 132(3): 279.e1–279.e6.
  29. Iwanaga J, Matsushita Y, Decater T, et al. Mandibular canal vs. inferior alveolar canal: Evidence-based terminology analysis. Clin Anat. 2021; 34(2): 209–217.
  30. Jacobs R, Mraiwa N, vanSteenberghe D, et al. Appearance, location, course, and morphology of the mandibular incisive canal: an assessment on spiral CT scan. Dentomaxillofac Radiol. 2002; 31(5): 322–327.
  31. Katz DC, Grote MN, Weaver TD. Changes in human skull morphology across the agricultural transition are consistent with softer diets in preindustrial farming groups. Proc Natl Acad Sci U S A. 2017; 114(34): 9050–9055.
  32. Kilic C, Kamburoğlu K, Ozen T, et al. The position of the mandibular canal and histologic feature of the inferior alveolar nerve. Clin Anat. 2010; 23(1): 34–42.
  33. Kqiku L, Sivic E, Weiglein A, et al. Position of the mental foramen: an anatomical study. Wien Med Wochenschr. 2011; 161(9-10): 272–273.
  34. Lacruz RS, Stringer CB, Kimbel WH, et al. The evolutionary history of the human face. Nat Ecol Evol. 2019; 3(5): 726–736.
  35. Laspos CP, Kyrkanides S, Tallents RH, et al. Mandibular and maxillary asymmetry in individuals with unilateral cleft lip and palate. Cleft Palate Craniofac J. 1997; 34(3): 232–239.
  36. Levine MH, Goddard AL, Dodson TB. Inferior alveolar nerve canal position: a clinical and radiographic study. J Oral Maxillofac Surg. 2007; 65(3): 470–474.
  37. Liang X, Jacobs R, Corpas LS, et al. Chronologic and geographic variability of neurovascular structures in the human mandible. Forensic Sci Int. 2009; 190(1-3): 24–32.
  38. Lieberman D, McBratney B, Krovitz G. The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci USA. 2002; 99(3): 1134–1139.
  39. Lundström A. Some asymmetries of the dental arches, jaws, and skull, and their etiological significance. Am J Orthodontics. 1961; 47(2): 81–106.
  40. Malinowski A. Czynniki działające na rozwój i kształt czaszki. Auksologia a promocja zdrowia, Kielce 1997: 89–96.
  41. Ngeow WC, Chai WL. The clinical significance of the retromolar canal and foramen in dentistry. Clin Anat. 2021; 34(4): 512–521.
  42. Oeschger ES, Kanavakis G, Halazonetis DJ, et al. Number of teeth is associated with facial size in humans. Sci Rep. 2020; 10(1): 1820.
  43. Ozturk A, Potluri A, Vieira AR. Position and course of the mandibular canal in skulls. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 113(4): 453–458.
  44. Ozturk CN, Ozturk C, Bozkurt M, et al. Dentition, bone loss, and the aging of the mandible. Aesthet Surg J. 2013; 33(7): 967–974.
  45. Phillips JL, Weller RN, Kulild JC. The mental foramen: Part 3. Size and position on panoramic radiographs. J Endod. 1992; 18(8): 383–386.
  46. Pinhasi R, Eshed V, Shaw P. Evolutionary changes in the masticatory complex following the transition to farming in the southern Levant. Am J Phys Anthropol. 2008; 135(2): 136–148.
  47. Pokhojaev A, Avni H, Sella-Tunis T, et al. Changes in human mandibular shape during the Terminal Pleistocene-Holocene Levant. Sci Rep. 2019; 9(1): 8799.
  48. Richards LC, Richards LC. Temporomandibular joint morphology in two Australian aboriginal populations. J Dent Res. 1987; 66(10): 1602–1607.
  49. Rossi M, Ribeiro E, Smith R. Craniofacial asymmetry in development: an anatomical study. Angle Orthod. 2003; 73(4): 381–385, doi: 10.1043/0003-3219(2003)073<0381:CAIDAA>2.0.CO;2.
  50. Sankar DK, Bhanu SP, Susan PJ. Morphometrical and morphological study of mental foramen in dry dentulous mandibles of South Andhra population of India. Indian J Dent Res. 2011; 22(4): 542–546.
  51. Santini A, Alayan I. A comparative anthropometric study of the position of the mental foramen in three populations. Br Dent J. 2012; 212(4): E7.
  52. Soikkonen K, Wolf J, Ainamo A, et al. Changes in the position of the mental foramen as a result of alveolar atrophy. J Oral Rehabil. 1995; 22(11): 831–833.
  53. Souyris F, Moncarz V, Rey P. Facial asymmetry of developmental etiology. A report of nineteen case. Oral Surg Oral Med Oral Pathol. 1983; 56(2): 113–124.
  54. Stanisz A. Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 1. Statystyki podstawowe. StatSofft Polska Sp. z o o., Kraków 2006.
  55. Teul I, Czerwiński F, Gawlikowska A, et al. Asymmetry of the ovale and spinous foramina in mediaeval and contemporary skulls in radiological examinations. Folia Morphol. 2002; 61(3): 147–152.
  56. Townsend G, Bockmann M, Hughes T, et al. Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology. 2012; 100(1): 1–9.
  57. Tsuji Y, Muto T, Kawakami J, et al. Computed tomographic analysis of the position and course of the mandibular canal: relevance to the sagittal split ramus osteotomy. Int J Oral Maxillofac Surg. 2005; 34(3): 243–246.
  58. Uchida Y, Noguchi N, Goto M, et al. Measurement of anterior loop length for the mandibular canal and diameter of the mandibular incisive canal to avoid nerve damage when installing endosseous implants in the interforaminal region: a second attempt introducing cone beam computed tomography. J Oral Maxillofac Surg. 2009; 67(4): 744–750.
  59. Uchida Y, Noguchi N, Goto M, et al. Measurement of anterior loop length for the mandibular canal and diameter of the mandibular incisive canal to avoid nerve damage when installing endosseous implants in the interforaminal region. J Oral Maxillofac Surg. 2007; 65(9): 1772–1779.
  60. Vasconcelos JA, Avila GB, Ribeiro JC, et al. Inferior alveolar nerve transposition with involvement of the mental foramen for implant placement. Med Oral Patol Oral Cir Bucal. 2008; 13(11): E722–E725.
  61. von Arx T, Bornstein MM. The bifid mandibular canal in three-dimensional radiography: morphologic and quantitative characteristics. Swiss Dent J. 2021; 131(1): 10–28.
  62. Von Cramon-Taubadel N. Global human mandibular variation reflects differences in agricultural and hunter-gatherer subsistence strategies. Proc Natl Acad Sci USA. 2011; 108(49): 19546–19551.
  63. Wadu SG, Penhall B, Townsend GC. Morphological variability of the human inferior alveolar nerve. Clin Anat. 1997; 10(2): 82–87, doi: 10.1002/(SICI)1098-2353(1997)10:2<82::AID-CA2>3.0.CO;2-V.
  64. Watanabe H, Mohammad Abdul M, Kurabayashi T, et al. Mandible size and morphology determined with CT on a premise of dental implant operation. Surg Radiol Anat. 2010; 32(4): 343–349.
  65. Wical KE, Swoope CC. Studies of residual ridge resorption. I. Use of panoramic radiographs for evaluation and classification of mandibular resorption. J Prosthet Dent. 1974; 32(1): 7–12.
  66. Wychowański P, Nieckula P, Panek M, et al. Próba oceny położenia otworu żuchwowego i bródkowego na podstawie analizy cyfrowych zdjęć pantomograficznych. Dent Med Probl. 2008; 45(1): 21–28.
  67. Yu IH, Wong YK. Evaluation of mandibular anatomy related to sagittal split ramus osteotomy using 3-dimensional computed tomography scan images. Int J Oral Maxillofac Surg. 2008; 37(6): 521–528.
  68. Ziółkiewicz T. Redukcja twarzoczaszki człowieka współczesnego. Czas Stomat. 1967; XX(4): 339–402.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.: +48 58 320 94 94, faks: +48 58 320 94 60, e-mail: viamedica@viamedica.pl