open access

Ahead of Print
ORIGINAL ARTICLES
Published online: 2018-08-31
Submitted: 2018-07-03
Accepted: 2018-08-24
Get Citation

Differences in fetal topographical anatomy between insertion sites of the iliopsoas and gluteus medius muscles into the proximal femur: a consideration of femoral torsion

Peng Zhao, Zhe Wu Jin, Ji Hyun Kim, Hiroshi Abe, Gen Murakami, José Francisco Rodríguez-Vázquez
DOI: 10.5603/FM.a2018.0083
·
Pubmed: 30178458

open access

Ahead of Print
ORIGINAL ARTICLES
Published online: 2018-08-31
Submitted: 2018-07-03
Accepted: 2018-08-24

Abstract

Prenatal twisting of the femoral neck seems to result in an angle of anteversion or torsion, but the underlying process has not been elucidated. This study analyzed sagittal, frontal and horizontal sections of 34 embryo and fetal specimens of gestational age (GA) 6–16 weeks (crown-rump length 21–130 mm). At GA 6–7 weeks, the iliopsoas (IP) and gluteus medius (GME) muscles were inserted into the anterior and posterior aspects of the femur, respectively, allowing both insertions to be viewed in a single sagittal section. At GA 8 weeks, the greater trochanter and the femoral neck angle became evident, and the GME tendon was inserted into the upper tip of the trochanter. At GA 9 weeks, the location of IP insertion was to the medial side of the GME insertion. After 9 weeks, the IP insertion consisted of a wavy, tendinous part of the psoas muscle and another part of the iliacus muscle, with many fibers of the latter muscle attached to the joint capsule. After GA 12 weeks, the IP was inserted into the anteromedial side of the greater trochanter, while the aponeurotic insertion of the GME wrapped around the trochanter. At GA 15–16 weeks, a deep flexion at the hip joint caused an alteration in the relative heights of the lesser and greater trochanter, with the former migrating from the inferior to the slightly superior side. These findings indicate that twisting of the femoral neck started at GA 8–9 weeks.

Abstract

Prenatal twisting of the femoral neck seems to result in an angle of anteversion or torsion, but the underlying process has not been elucidated. This study analyzed sagittal, frontal and horizontal sections of 34 embryo and fetal specimens of gestational age (GA) 6–16 weeks (crown-rump length 21–130 mm). At GA 6–7 weeks, the iliopsoas (IP) and gluteus medius (GME) muscles were inserted into the anterior and posterior aspects of the femur, respectively, allowing both insertions to be viewed in a single sagittal section. At GA 8 weeks, the greater trochanter and the femoral neck angle became evident, and the GME tendon was inserted into the upper tip of the trochanter. At GA 9 weeks, the location of IP insertion was to the medial side of the GME insertion. After 9 weeks, the IP insertion consisted of a wavy, tendinous part of the psoas muscle and another part of the iliacus muscle, with many fibers of the latter muscle attached to the joint capsule. After GA 12 weeks, the IP was inserted into the anteromedial side of the greater trochanter, while the aponeurotic insertion of the GME wrapped around the trochanter. At GA 15–16 weeks, a deep flexion at the hip joint caused an alteration in the relative heights of the lesser and greater trochanter, with the former migrating from the inferior to the slightly superior side. These findings indicate that twisting of the femoral neck started at GA 8–9 weeks.

Get Citation

Keywords

torsion, femur, neck angle, hip joint rotation, trochanter, iliopsoas muscle, gluteus medius muscle, human fetus

About this article
Title

Differences in fetal topographical anatomy between insertion sites of the iliopsoas and gluteus medius muscles into the proximal femur: a consideration of femoral torsion

Journal

Folia Morphologica

Issue

Ahead of Print

Published online

2018-08-31

DOI

10.5603/FM.a2018.0083

Pubmed

30178458

Keywords

torsion
femur
neck angle
hip joint rotation
trochanter
iliopsoas muscle
gluteus medius muscle
human fetus

Authors

Peng Zhao
Zhe Wu Jin
Ji Hyun Kim
Hiroshi Abe
Gen Murakami
José Francisco Rodríguez-Vázquez

References (13)
  1. Abe S, Nakamura T, Rodriguez-Vazquez JF, et al. Early fetal development of the rotator interval region of the shoulder with special reference to topographical relationships among related tendons and ligaments. Surg Radiol Anat. 2011; 33(7): 609–615.
  2. Abe SI, Aoki M, Nakao T, et al. Variation of the subscapularis tendon at the fetal glenohumeral joint. Okajimas Folia Anat Jpn. 2014; 90(4): 89–95.
  3. Aizawa Y. On the organization of the Plexus lumbalis. I. On the recognition of the three-layered divisions and the systematic description of the branches of the human femoral nerve. Okajimas Folia Anat Jpn. 1992; 69(1): 35–74.
  4. Ishizawa A, Hayashi S, Nasu H, et al. An artery accompanying the sciatic nerve (arteria comitans nervi ischiadici) and the position of the hip joint: a comparative histological study using chick, mouse, and human foetal specimens. Folia Morphol. 2013; 72(1): 41–50.
  5. Jin ZW, Jin Y, Yamamoto M, et al. Oblique cord (chorda obliqua) of the forearm and muscle-associated fibrous tissues at and around the elbow joint: a study of human foetal specimens. Folia Morphol. 2016; 75(4): 493–502.
  6. Kawashima T, Sasaki H. Reasonable classical concepts in human lower limb anatomy from the viewpoint of the primitive persistent sciatic artery and twisting human lower limb. Okajimas Folia Anat Jpn. 2010; 87(3): 141–149, erratum in 2011. 87 :195.
  7. Masłoń A, Sibiński M, Topol M, et al. Development of human hip joint in the second and the third trimester of pregnancy; a cadaveric study. BMC Dev Biol. 2013; 13: 19.
  8. Muraki T, Aoki M, Uchiyama E, et al. A cadaveric study of strain on the subscapularis muscle. Arch Phys Med Rehabil. 2007; 88(7): 941–946.
  9. Ogoshi A, Kawashima T, Hanaoka Y, et al. Twisting of the human lower extremity changes the relationship of bones, ligaments, muscles, and nerves. J Tokyo Women’s Med Univ. 2001; 71: 773–786.
  10. Shiraishi Y, Jin ZW, Mitomo K, et al. Foetal development of the human gluteus maximus muscle with special reference to its fascial insertion. Folia Morphol. 2018; 77(1): 144–150.
  11. Staheli LT, Corbett M, Wyss C, et al. Lower-extremity rotational problems in children. Normal values to guide management. J Bone Joint Surg Am. 1985; 67(1): 39–47.
  12. Walker JM, Goldsmith CH. Morphometric study of the fetal development of the human hip joint: significance for congenital hip disease. Yale J Biol Med. 1981; 54(6): 411–437.
  13. Yoshio M, Murakami G, Sato T, et al. The function of the psoas major muscle: passive kinetics and morphological studies using donated cadavers. J Orthop Sci. 2002; 7(2): 199–207.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By  "Via Medica sp. z o.o." sp.k., Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl