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Background: The complex process of atherosclerosis is thought to begin with 
endothelial cell dysfunction, and advanced atherosclerosis is the underlying cause 
of coronary artery disease (CAD). Uncovering the underlying mechanisms of 
CAD-related endothelial cell injury may contribute to the treatment. 
Materials and methods: Cardiac microvascular endothelial cells (CMVECs) were 
treated with oxidised low-density lipoprotein (ox-LDL) to mimic an injury model. 
The involvement of Talin-1 (TLN1) and integrin alpha 5 (ITGA5) in the proliferation, 
apoptosis, angiogenesis, inflammatory response, and oxidative stress in CMVECs 
were assessed. 
Results: TLN1 overexpression assisted CMVECs in resistance to ox-LDL stimulation, 
with alleviated cell proliferation and angiogenesis, reduced apoptosis, inflam-
matory response, and oxidative stress. TLN1 overexpression triggered increased 
ITGA5, and ITGA5 knockdown reversed the effects of TLN1 overexpression on the 
abovementioned aspects. Together, TLN1 synergized with ITGA5 to ameliorate 
the dysfunction in CMVECs. 
Conclusions: This finding suggests their probable involvement in CAD, and increas-
ing their levels is beneficial to disease relief. (Folia Morphol 2024; 83, 1: 92–101)

Key words: Talin-1, integrin, coronary artery disease, cardiac 
microvascular endothelial cells, atherosclerosis

INTRODUCTION
Coronary artery disease (CAD), a common cardi-

ovascular disease, is one of the primary threats to 
human health worldwide [15]. Advanced atheroscle-
rosis is the underlying cause of CAD and heritability 
estimates for CAD vary from 40% to 70%, indicating 
a strong contribution of genes to disease pathology 
[13]. Genome-wide association studies have revealed 

that approximately one-third of CAD-related loci are 
associated with traditional risk factors, such as lipids, 
blood pressure, body mass index, diabetes, and smok-
ing behaviour. Genes at the remaining loci have been 
implicated in vascular wall-related risk mechanisms 
[1]. Cardiac microvascular endothelial cells (CMVECs), 
the most abundant cells in the myocardium [22], or-
chestrate cardiogenesis during development, regulate 



93

Xianfeng Wang et al., TLN1 and ITGA5 in CAD

adult cardiac function, and modulate the pathological 
processes in heart failure [31, 32, 36]. CAD is always 
accompanied by endothelial cell damage [21], and 
uncovering the underlying mechanisms of CAD-re-
lated endothelial cell injury may contribute to the 
treatment of the disease.

The protein encoded by the Talin-1 (TLN1) gene,  
a major component of the extracellular matrix (ECM), 
mediates the adhesion of integrins to the ECM [3, 18], 
and both bioinformatics and experimental analyses 
identified downregulated expression of TLN1 in CAD 
samples [9]. Overexpressed TLN1 may cooperate with 
β-oestradiol to stimulate endometrial stromal cell 
proliferation and neovascularisation in adenomyosis, 
synergistically promoting the growth and survival of 
ectopic lesions [24]. TLN1 expression was significant-
ly downregulated in aortic dissection samples, and 
downregulation of TLN1 expression was associated 
with increased proliferation and migration of vascular 
smooth muscle cells in aortic dissection [26]. How-
ever, the specific role and regulatory mechanism of 
TLN1 in CAD have not been reported yet. According 
to the String website [19], TLN1 was found to have 
a potential interaction with integrin alpha 5 (ITGA5), 
and ITGA5 is involved in promoting endocardial dif-
ferentiation and cardiac morphogenesis [17].

This study utilised oxidised low-density lipoprotein 
(ox-LDL) to induce CMVECs to mimic an injury model 
[29], with the intention of defining the association 
existing between TLN1 and ITGA5, and exploring 
their roles in CMVECs. Exploring the mechanism of 
endothelial cell injury is beneficial to the development 
of CAD treatment.

MATERIALS AND METHODS
Cell culture and treatment

Cardiac microvascular endothelial cells (Procell, 
Wuhan, China) were cultured in Dulbecco’s modified 
eagle’s medium (DMEM, Gibco) along with 10% fe-
tal bovine serum (Gibco), 30 μg/mL endothelial cell 
growth supplement (ScienCell), 1 U/mL heparin, and 
penicillin-streptomycin mixture (Gibco) [4]. CMVECs 
were maintained at 37oC in a 5% CO2 atmosphere. 
CMVECs were stimulated with ox-LDL (100 μg/mL, 
Yeasen, Shanghai, China) for 24 h to mimic CAD [29].

Cell transfection

Cells underwent transfection to promote TLN1 
overexpression or ITGA5 knockdown. X-tremeGENE 
transfection reagent (Roche, Shanghai, China) mixed 

with plasmids or short hairpin RNAs (HanBio, Shang-
hai, China) were added to the CMVECs [23] and incu-
bated at 37°C for 6 h before replacing with fresh me-
dium. After 48 h, transfection efficacy was assessed.

Reverse transcription quantitative polymerase 
chain reaction (RT-qPCR)

Cardiac microvascular endothelial cells were 
added with TRIzol® Reagent (Invitrogen), followed 
by chloroform, and the lysate was centrifuged at 
10,000×g for 15 min at 4°C. Isopropanol precipitated 
the RNA in the upper aqueous phase and then RNA 
was reverse transcribed to generate cDNA using Evo 
M-MLV RT Kit (Accurate, Changsha, China). Quant-
iTect SYBR Green PCR Kit (Qiagen, Shanghai, China) 
was used to perform quantitative polymerase chain 
reaction (qPCR) according to the instructions. Relative 
mRNA levels were measured using the ΔΔCt method 
after normalization to actin [37].

Western blotting

Proteins were isolated from CMVECs after treat-
ment with RIPA lysis buffer (Solarbio, Beijing, China) 
and quantified using a Nano 3000 protein detector 
(YPH-Bio, Beijing, China). Proteins were then sep-
arated using SDS-polyacrylamide gel electropho-
resis and transferred to PVDF membranes (Roche) 
[6]. Membranes were incubated sequentially with 
skimmed milk, primary antibodies, and HRP-conjugat-
ed secondary antibody. The antibodies involved in the 
study were all from Invitrogen or Abcam. Blots were 
visualised after ECL reagent (Millipore) treatment and 
semi-quantified using ImageJ software.

Cell counting Kit-8 (CCK8)

Transfected CMVECs were seeded in 96-well plates 
and treated with ox-LDL for 24 h. The incubation was 
continued for 2 h after CCK8 solution (Beyotime, 
Shanghai, China) was supplemented into each well 
[11]. Optical density was recorded at 450 nm using  
a microplate reader (Thermo Fisher Scientific).

5-ethynyl-2’-deoxyuridine (EdU) assay

Following the transfected CMVECs were treat-
ed with ox-LDL for 24 h, they were incubated with 
100 μL EdU reagent (Ribobio, Guangzhou, China) 
for 4 h [12]. Then CMVECs were washed twice with 
phosphate buffered saline (PBS), fixed with 4% par-
aformaldehyde (Chemegen, Shanghai, China) for  
15 min, and stained with DAPI (Beyotime) for 10 min. 



94

Folia Morphol., 2024, Vol. 83, No. 1

Stained CMVECs were visualized and imaged under a 
fluorescent microscope (Olympus, Japan).

Flow cytometry

Cardiac microvascular endothelial cells were 
washed twice with cold PBS and suspended in bind-
ing buffer. 100 μL of cell suspension was transferred 
to culture tubes and incubated with Annexin V FITC 
and propidium iodide (Elabscience, Wuhan, China) for  
15 min at room temperature in the dark [25]. Apopto-
sis was analysed using flow cytometry (BD FACSCanto, 
USA) and FlowJo software.

Angiogenesis assay

Matrigel (BD Biosciences) was diluted 1:1 with 
cold endothelial cell growth medium, starved CMVECs 
were seeded on Matrigel and incubated at 37°C for 

6 h [35]. The structure of the capillary was observed 
using a microscope (Olympus).

ELISA
Secreted levels of tumour necrosis factor alpha 

(TNF-α), interleukin (IL)-6, and IL-1β [10] were de-
termined in CMVECs using corresponding ELISA kits 
(Elabscience) according to the manufacturer’s instruc-
tions. Optical density was recorded at 450 nm using 
a microplate reader.

Co-immunoprecipitation (Co-IP)

Cardiac microvascular endothelial cells were ly-
sed on ice for 10 min, centrifuged at 13,000×g for 
10 min at 4oC, and the supernatant was collected. 
2.5 µg of TLN1 or ITGA5 antibody (Invitrogen) was 
added to the lysate (500 µg/IP) along with 10 µL of 

Figure 1. Talin-1 (TLN1) level in cardiac microvascular endothelial cells (CMVECs) (A) CMVECs were treated with oxidised low-density lipo
protein (ox-LDL) and the expression level of TLN1 was determined using reverse transcription quantitative polymerase chain reaction (RT-qPCR)  
and (B) western blotting; TLN1 overexpression in CMVECs by transfection was confirmed using RT-qPCR (C) and western blotting (D);  
Following ox-LDL treatment, TLN1 in the transfected CMVECs was confirmed using RT-qPCR (E) and western blotting (F); **p < 0.01,  
***p < 0.001; oe — overexpression; NC — negative control.
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protein A+G magnetic beads (Beyotime), followed 
by gentle rotation for 2 h at room temperature. The 
supernatant was removed magnetically and the beads 
together with SDS sample buffer were boiled at 95oC 
for 5 min prior to routine western blot analysis [37].

Statistical analysis

Statistical analysis was performed using SPSS 19.0. 
Data are presented as mean ± standard deviation, 
and statistical differences between groups were ana-
lysed using two tailed, unpaired Student’s t-test (two 
groups), and one-way ANOVA followed by Tukey’s 
post hoc test (multiple groups) [14]. P < 0.05 was 
considered a significant difference.

RESULTS
TLN1 in apoptosis and angiogenesis

In CMVECs, TLN1 mRNA and protein levels de-
clined in response to the ox-LDL treatment (Fig. 1A, 
B). To discover the specific roles of TLN1, the overex-
pression of TLN1 in CMVECs was confirmed (Fig. 1C, 
D). Following ox-LDL treatment, TLN1 in the ox-LDL 
+ oe-TLN1 group elevated compared with the ox-LDL 
+ oe-NC group (Fig. 1E, F). Cell viability (Fig. 2A) and 
proliferation (Fig. 2B) were decreased upon ox-LDL 
treatment and TLN1 overexpression reversed these 
decline. Ox-LDL treatment increased the proportion 
of apoptotic cells, accompanied by a decline in Bcl-2 
and an increase in Bax. Nevertheless, TLN1 overex-

Figure 2. Talin-1 (TLN1) in apoptosis and angiogenesis. The viability and proliferation in each group was determined using cell counting Kit-8 
(CCK8) (A) and 5-ethynyl-2’-deoxyuridine (EdU) assays (B). Cell apoptosis was determined using flow cytometry (C) and western blotting (D); 
E. The matrigel-based angiogenesis assay was used to detect the angiogenic capacity; *p < 0.05, **p < 0.01, ***p < 0.001; ox-LDL —  
oxidised low-density lipoprotein; oe — overexpression; NC — negative control.
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Figure 3. Talin-1 (TLN1) in inflammation and oxidative stress; A. ELISA kits were used to measure cellular inflammatory factor levels; B. Oxi-
dative stress was evaluated based on the levels of malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), and 
catalase (CAT); C. Western blotting was used to detect the enrichment of proteins associated with inflammation and oxidative stress;  
**p < 0.01; ***p < 0.001; ox-LDL — oxidised low-density lipoprotein; oe — overexpression; NC — negative control.
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pression reduced ox-LDL-induced apoptosis (Fig. 2C, 
D). Moreover, ox-LDL treatment attenuated the angi-
ogenic capacity of cells, whereas TLN1 overexpression 
alleviated this impact (Fig. 2E).

TLN1 in inflammation and oxidative stress

TNF-α, IL-1β, and IL-6 levels in CMVECs were in-
creased upon ox-LDL treatment, and TLN1 overex-
pression reduced the impacts of ox-LDL on these 
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Figure 4. The interaction between talin-1 (TLN1) and integrin alpha 5 (ITGA5). Following oxidised low-density lipoprotein (ox-LDL) treatment, 
ITGA5 level in cardiac microvascular endothelial cells (CMVECs) was confirmed using reverse transcription quantitative polymerase chain 
reaction (RT-qPCR) (A) and western blotting (B). C. Co-immunoprecipitation (Co-IP) assay was used to verify the interaction between TLN1 
and ITGA5; D. The level of ITGA5 upon TLN1 overexpression was determined using western blotting; ***p < 0.001; oe — overexpression; 
NC — negative control.
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factors (Fig. 3A). In terms of oxidative stress, ox-LDL 
treatment triggered the increase in malondialdehyde 
(MDA) and reactive oxygen species (ROS), accompa-
nied by the decrease in superoxide dismutase (SOD) 
and catalase (CAT). TLN1 overexpression likewise re-
duced the alterations in these indicators resulted 
from ox-LDL treatment (Fig. 3B). The enrichments 
of proteins associated with inflammation (Cox2 and 
iNOS) and oxidative stress (Nox2 and Nox4) were all 
elevated after ox-LDL treatment, and partially fell back 
due to TLN1 overexpression (Fig. 3C).

The interaction between TLN1 and ITGA5

The expression level of ITGA5 was found to be de-
clined in response to the ox-LDL treatment (Fig. 4A, B). 
According to Co-IP results, ITGA5 protein enrichment 
could be detected in TLN1 antibody-bead complexes, 
vice versa (Fig. 4C). Moreover, TLN1 overexpression 
increased the level of ITGA5 (Fig. 4D).

Modulation of ITGA5

Following ITGA5 was identified to be knocked 
down (Fig. 5A, B), additional ITGA5 knockdown was 
found to reduce cell viability and proliferation, partly 
reversing the effects of TLN1 overexpression (Fig. 5C, 
D). ITGA5 knockdown likewise promoted the apopto-
sis of CMVECs, along with dropped Bcl-2 and elevated 
Bax protein expression (Fig. 5E, G). The angiogenesis 
of CMVECs was weakened by the influence of ITGA5 
knockdown (Fig. 5H). In addition, ITGA5 knockdown 
enhanced the secretion of inflammatory factors and 
promoted oxidative stress (Fig. 6A–C).

DISCUSSION
Atherosclerotic plaque builds up in the blood ves-

sels that supply the heart with oxygen and nutrients 
[20, 33]. The complex process of atherosclerosis be-
gins early and is thought to begin with dysfunction 
of coronary endothelial cells [2]. To prevent CAD, 
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Figure 5. Modulation of integrin alpha 5 (ITGA5) in apoptosis. ITGA5 knockdown in CMVECs by transfection was confirmed using reverse 
transcription quantitative polymerase chain reaction (RT-qPCR) (A) and western blotting (B); The impacts of ITGA5 knockdown on the viability 
and proliferation of cardiac microvascular endothelial cells (CMVECs) was assessed using cell counting Kit-8 (CCK8) (C) and 5-ethynyl-2’- 
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sity lipoprotein; sh — short hairpin RNA; oe — overexpression; NC — negative control.
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the population is encouraged to adhere to a healthy 
lifestyle, such as not smoking, avoiding obesity, eating 
a healthy diet, and exercising regularly [13]. High-
risk groups benefit from drugs to lower LDL, blood 
pressure, or prevent blood clots [8, 28]. As with most 
complex diseases, an individual’s risk for developing 
CAD is modulated by the interplay between genetic 
and lifestyle factors [15]. In this study, TLN1 was 
found to positively cooperate with ITGA5 to suppress 
ox-LDL-induced inflammation, oxidative stress, and 
enhance angiogenesis in CMVECs. The involvement 
of TLN1 in CAD has been revealed for the first time.

The integrin family to which ITGA5 belongs is 
closely related to the occurrence and development of 
atherosclerosis [5, 16]. Alterations in integrin signal-
ling affect multiple aspects of atherosclerosis, from 
the earliest induction of inflammation to the develop-

ment of advanced fibrotic plaques [7]. In a previous 
study, the expression of miR-92a was upregulated in 
neointimal hyperplastic lesions after vein transplan-
tation, and TGF-β1 induced a significant increase of 
microRNA-92a in human umbilical vein endothelial 
cells and induced endothelial-mesenchymal transi-
tion. ITGA5 is a potential target gene involved in 
the development of neointima formation in these 
vein grafts [34]. MicroRNA-92a was also elevated in 
LPS-induced pulmonary microvascular endothelial 
cells, and inhibition of miR-92a negatively regulated 
ITGA5 to improve LPS-induced (LPS, lipopolysaccha-
ride) endothelial barrier dysfunction [27]. In view 
of the penetration of ITGA5 in the development of 
atherosclerosis [30], it is suggested that regulating 
ITGA5 can eradicate the occurrence of CAD from the 
early stage.
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CONCLUSIONS
In summary, this study reveals for the first time that 

TLN1 and ITGA5 are involved in alleviating CMVECs 
injury, and suggests their probable involvement in 
CAD, and increasing their levels is beneficial to disease 
relief. It is hoped that the findings of the present study 
will provide a theoretical basis for further research.
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