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The availability of an appropriate and reliable research model is helpful for re-
searchers to understand the occurrence and development of diseases. Historically, 
animal models have been beneficial in the study of intervertebral disc degenera-
tive diseases, but intervertebral disc degeneration (IDD) is a precise and complex 
process that needs to appear and occur in a specific tissue microenvironment, 
and animal degeneration models cannot fully simulate these parameters. These 
challenges must be overcome, especially when animal models cannot fully gen-
eralise the complex pathology of humans. In the past few years, the research on 
the cell disease model has made important progress, and the construction of the 
nucleus pulposus cell (NPC) degeneration model has become an indispensable 
step in studying the occurrence and development of IDD. Here, several different 
methods of constructing NPC degeneration models and indicators for testing 
the effect of modelling are introduced. The practical applications of cell models 
constructed by different methods are enumerated to screen and evaluate effective 
methods of establishing degenerative cell models and explore the mechanism of 
IDD. (Folia Morphol 2023; 82, 4: 745–757)

Key words: human cell model, intervertebral disc degeneration, disease 
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INTRODUCTION
Intervertebral disc degeneration (IDD) is a multi-

factorial pathological process associated with lower 
back pain, which can lead to severe neurological dys-
function and disability [3, 95]. The intervertebral disc 
(IVD), as the joint connecting the vertebral body, is the 
most critical part of the spine’s load-bearing system, 
and it is also the earliest tissue in the human body 
to develop degenerative changes [83]. The nucleus 
pulposus, located in the centre of the annulus fibrosus 
and between the upper and lower endplate, is gelat-
inous, can carry a large number of water molecules, 
and has strong toughness, helping to buffer axial 

pressure and ensure the flexibility of the spine. The 
nucleus pulposus is essential to maintain the balance 
and steady state of the IVD [37]. The main patholog-
ical features of IDD are considered to be phenotypic 
changes, dysfunctions, decreases in the number of 
active cells, and decreases in the extracellular ma-
trix (ECM) content of nucleus pulposus cells (NPCs). 
These lead to a cascade event, which begins with 
changes in the local cellular microenvironment and 
progresses to damage to the structure and function 
of IVD [110]. A series of factors such as mechanical 
changes, imbalance of mitochondrial quality con-
trol, inflammation, and oxidative stress are involved 
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in promoting the occurrence of NPC degeneration 
[16, 22, 87, 99]. The new pharmacological strategy 
focuses on eliminating or reversing the degenerative 
cells in the degenerative IVD to prevent and treat 
intervertebral disc degenerative disease (IVDD) [27, 
125]. Therefore, it is urgent to establish a reliable 
disease model to study the molecular basis of IVDD 
to reproduce what happens in the human body in 
vitro. Historically, models built by non-upright walk-
ing animals cannot effectively simulate the changes 
experienced in human IDD [42]. Primate models are 
expensive and ethically burdensome, which causes 
this author to consider economic and technological 
conveniences and find compromises between larger 
animals and humans. In recent years, the public has 
called for minimizing the use of animals in research 
laboratories, also promoting the improvement of the 
in vitro model.

The traditional severe degenerative NPCs isolated 
from patients’ tissues are difficult to apply in a mon-
olayer cell expansion culture. Although normal or 
mildly degenerative cells can be further cultured, the 
experimental results are not significant. Therefore, it is 
urgently needed to build an effective degenerative cell 
model through different induction methods, which 
can not only enhance the credibility of the experiment 
and the persuasive power of the experimental data 
but also help society to have a clearer understanding 
of the occurrence and development of IVDD. In the 
past few years, there have been many methods to 
induce NPC degeneration, but the model establish-
ment lacks unified standards and has no systematic 
summary. Therefore, this paper will introduce several 
methods and model-effect evaluation indicators for 
inducing NPC degeneration to provide a reference for 
future screening and evaluation of effective methods 
for establishing degenerative cell models and explor-
ing the mechanisms of IVD degeneration.

NUCLEUS PULPOSUS CELLS 
DEGENERATION MODEL ESTABLISHED 

BY A PHYSICAL METHOD
The IVD comprises the nucleus pulposus, end-

plates, and annulus fibrosus. The nucleus pulposus 
in the central part is gelatinous, which can effectively 
retain moisture and has strong flexibility [53]. The 
osmosis of the upper and lower endplates is the main 
way NPCs metabolise nutrients. The outer fibrous an-
nulus, composed of a staggered distribution of elastin 
and type I collagen, has strong tension [2, 19, 95].  

These structures not only provide support for the IVD 
but also ensure the flexibility of the spine. However, 
this also exposes NPCs to various unfavourable en-
vironments, such as inadequate nutrient supply and 
long-term mechanical stress, including compression, 
shear stress, hydrostatic pressure, and tension [76, 
78]. The long-term effects of these factors will cause 
changes in the structural and biochemical composi-
tion of the IVD, accompanied by a series of pathologi-
cal changes, resulting in IVDD [32, 43]. It is particularly 
important to choose different modelling methods for 
different pathogeneses, according to which some 
researchers choose certain physical methods to in-
duce NPC degeneration (axial compression, transverse 
stretching, hyperosmotic stress, hypoxia, etc., Fig. 1). 
In the axial compression method, NPCs are placed in  
a pressure device with good sealing to compress the 
air containing 5% carbon dioxide (CO2) to provide 
different MPa pressure values and build NPC degen-
eration models [9, 44, 105]. In 2012, Ding et al. [15] 
used this method to construct a cell model and found 
that part of the pathological cause of IVDD induced 
by mechanical compression came from mitochondrial 
damage. Follow-up experiments showed that co-cul-
tures with bone marrow mesenchymal stem cells 
could inhibit compression-induced NPC apoptosis [8].  
The transverse periodic stretching method uses  
a transverse reciprocating stretching device to provide 
supracellular physiological tension for constructing  
a disease model [4, 14, 74, 100]. This method is also 
often used to build NPC degeneration models [115, 
118]. In 2019, Yang et al. [107] used the Flexercell 
tension system to build an NPC degeneration model 
and found that abnormal mechanical stress promot-

Figure 1. Simple schematic diagram of nucleus pulposus cells 
(NPCs) degeneration induced by commonly used physical methods.
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ed NPC apoptosis and accelerated the occurrence of 
IDD, while autophagy helped to reverse apoptosis. 
When the biological stress exceeds the physiological 
expansion pressure of NPCs, whether the process is 
either axial compression or transverse stretching, the 
apoptosis pathway is activated, the expression of the 
polysaccharide-protein gene is down-regulated [12], 
and the osmotic and hydrostatic pressures increase. 
Some research teams have studied the effect of os-
motic pressure on NPC biology because the change 
of osmotic pressure is a secondary change under 
biological stress. For example, in 2014, Dong et al. 
[18] established a rabbit NPC degeneration model by 
increasing the osmotic pressure of the culture medi-
um and found that high osmotic pressure activated 
p38 mitogen-activated protein kinases (p38MAPK), 
mitogen-activated protein kinase 8/9 (JNK1/2), and 
mitogen-activated protein kinase 3/1 (ERK1/2) path-
ways in rabbit NPCs. The activated p38MAPK and 
JNK1/2 pathways induced NPC apoptosis, while the 
activated ERK1/2 pathway was beneficial to cell sur-
vival. The change in oxygen content is also closely 
related to NPC degeneration. In 2016, Choi et al. [10] 
successfully induced NPC degeneration by adjusting 
the oxygen concentration in an incubator from 21% 
to 1% (5% CO2 and 94% nitrogen) in cultured cells 
for 24 h. In addition, reducing the pH value of the 
culture medium and creating an acidic environment 
can also be used to construct an NPC degeneration 
model [106]. 

NUCLEUS PULPOSUS CELLS 
DEGENERATION MODEL ESTABLISHED 

BY A CHEMICAL METHOD
Inflammatory reactions are important patho-

logical mechanisms of IDD [84]. The overexpression 
of proinflammatory cytokines can destroy the ECM 
homeostasis of the IVD and induce degeneration 
and catabolism of the IVD [57, 71]. Neurotrophins 
are produced under the stimulation of inflammatory 
factors and promote nerve growth into the IVD, ac-
celerating the IDD cascade [30]. In addition, inflam-
matory factors have a negative effect on reparative 
stem cells [55, 73, 89, 101]. The chemical method to 
construct the NPC degeneration model is to simulate 
the inflammatory environment in the early stage of 
lumbar pathology caused by chemical reagents and 
drugs to establish the cell model (Fig. 2). This type 
of cell model is highly important for promoting the 
research of IVDD. In 2006, Aota et al. [1] found that 

toll-like receptors in bovine NPCs are sensitive to 
the binding of bacterial lipopolysaccharides (LPSs)  
(a microbial component found in the outer membrane 
of Gram-negative bacteria). Toll-like receptors are 
important regulators of the nuclear factor kappa-B 
signalling pathway and are closely related to cellular 
inflammation and degeneration [75]. In 2013, Kim 
et al. [49] successfully established a degeneration 
model of bovine NPCs induced by LPS and used this 
cell model to prove that inhibition of the myeloid 
differentiation primary response 88 pathway can 
effectively inhibit inflammation and anti-catabolism. 
Since then, many scholars have chosen this modelling 
method [17, 60, 116, 121, 124], and the LPS induction 
method has since become the most used and popular 
modelling method. In addition, interleukin-1 beta and 
tumour necrosis factor-alpha are important pro-in-
flammatory factors involved in cell differentiation and 
apoptosis by regulating various pathways, so they are 
also often used to induce NPC degeneration [7, 31, 
34, 47, 48, 117, 119, 123].

Some stressors can also be used to construct 
NPC degeneration models. These stressors strongly 
oxidize, which can destroy the normal redox state 
in cells, leading to the imbalance between the oxi-
dation and antioxidant systems [81]. These stressors 
can also stimulate cells to produce harmful mol-
ecules, such as damaged nucleic acids, proteins, 
and lipids, which may lead to the occurrence and 
development of chronic degenerative disease [98]. 
Hydrogen peroxide (H2O2) is a commonly used in-
duction reagent by researchers. As a type of reactive 
oxygen species, H2O2 can inhibit cell proliferation, 
cause oxidative damage to macromolecules in cells, 
and eventually lead to serious consequences, such 
as cell senescence, death, and mutation. Therefore, 
H2O2-induced oxidative stress cell models are widely 
used to explore the mechanism of free radical-medi-
ated cell injury and the protection and repair mech-
anism of antioxidants on oxidative damage [35, 64, 
72, 120]. In 2019, Tang et al. [93] used H2O2 to build 
a mouse NPC degeneration model to study the role 
of nuclear factor erythroid 2–related factor 2 (Nrf2) 
in NPC degeneration. It was found that Nrf2 can 
slow down NPC degeneration induced by oxidative 
stress by activating autophagy through feedback. 
Tert-butyl hydroperoxide (t-BHP) [70, 108, 122] can 
also be used to construct an NPC degeneration mod-
el. In 2016, Chen et al. [6] proved that metformin 
could inhibit the apoptosis and senescence of NPCs 
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induced by t-BHP by autophagy. In recent years, 
angiotensin II (AngII) has also been used to induce 
NPC degeneration [90]. The Ang II receptor type 1 
(AT1) receptor (G protein-coupled receptor) is the 
main biological medium of AngII. The combination 
of AngII and AT1 can promote the production of 
reactive oxygen species and the accumulation of 

pro-inflammatory cytokines and classically activat-
ed macrophages, resulting in NPC degeneration 
[13, 88]. In addition, advanced oxidation protein 
products [104], stromal cell-derived factors [69], 
polymethyl methacrylate [24], nitroprusside [59], 
and cobalt chloride [23] can also be used to establish 
an NPC degeneration model.

Figure 2. Simple schematic of nucleus pulposus cells degeneration induced by commonly used chemical methods; IL — interleukin; LPS —  
lipopolysaccharides; TNF — tumour necrosis factor; TLR — toll-like receptor; WNT — wingless-type MMTV integration site family; JNK — 
c-Jun N-terminal kinase; NF-κB — nuclear factor kappa-B; STAT — signal transducer and activator of transcription; MAPK — mitogen-acti-
vated protein kinases; ROS — reactive oxygen species.
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NUCLEUS PULPOSUS CELL 
DEGENERATION MODEL  

ESTABLISHED BY BIOLOGICAL  
OR BIOENGINEERING METHODS

An NPC degeneration model can also be con-
structed by changing the nutritional environment, 
increasing replication algebra, gene knockout, mi-
crobial co-culture, etc. (Fig. 3). Nucleus pulposus 
cells exist in a unique environment regarding their 
nutritional supply. The IVD has no direct vascular 
supply, so nutrients are provided to NPCs by capillaries 
that penetrate the subchondral plate and terminate 
at the boundary of the cartilage endplate. The NPC 
microstructure changes, such as reduced capillary 
density [63, 113], endplate calcification [25, 112], 
and metabolic disorders [54], will cause the IVD to 
degenerate. In 2018, Wang et al. [97] successfully 
established an NPC degeneration model by incubat-
ing NPCs of normal mice in high glucose for 72 h. In 
2017, Chang et al. [5] also successfully induced NPC 
degeneration by using a sugar-free medium. Amino 
acid and serum removal can also be used to construct 
an NPC degeneration model [61, 68]. The natural 

degeneration of NPCs is mostly related to age [51, 
79]. In 2019, Gong et al. [28] constructed a degener-
ation model by repeated cell passage, which proved 
that bone morphogenetic protein 7 could reduce 
the senescence of human IVD NPCs induced by the 
passage of time by activating the phosphoinositide 
3-kinase/protein kinase B pathway. Gene knockout 
and microbial co-culture are newer methods for NPC 
degeneration models. Kong et al. [52] construct-
ed a degenerative cell model by down-regulating 
the hsa_circ_0059955 gene of normal mouse NPCs 
and inducing NPC apoptosis and cell cycle arrest. In 
2020, He et al. [33] found that Cutibacterium acnes 
induce NPC degeneration by activating the NOD-like 
receptor thermal protein domain associated protein 
3 (NLRP3)-dependent pathway.

MODEL EFFECT EVALUATION INDEX
After choosing different ways to construct the 

NPC degeneration model, it is necessary to further 
evaluate the success of the model, the state of cell 
activity, the degree of cell damage, etc. Morpholog-
ical observation is a more intuitive way of detection 

Figure 3. A–D. Simple schematic representation of biological or bioengineered methods for inducing nucleus pulposus (NP) cells (NPCs) degeneration.
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because degenerative cells will appear as swelling, 
flattening, with reduced nuclear volume, and have 
loose adhesion in the shape of a linear semi-adherent 
[15]. Transmission electron microscopes are used to 
observe the subcellular structure, nuclear shrinkage, 
a large number of apoptotic bodies, chromatin con-
densation, and cytoplasmic vesicles containing more 
dense vesicles [8]. However, there is no quantitative 
standard to judge the quality of cell morphology, so 
this method cannot be used as an evaluation index 
alone, and it is often necessary to use it alongside  
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide, cell counting Kit-8, or terminal deoxynucle-
otidyl transferase mediated nick end labelling assays, 
flow cytometry, etc. to further evaluate cell activity.

Type II collagen, polyproteoglycans, and cell ma-
trix-degrading enzymes (matrix metalloproteinase 
[MMP] 3, MMP13, a disintegrin and metallopro-
teinase with thrombospondin motifs [ADAMTS] 4, 
and ADAMTS5) are often used as important indica-
tors of NPC degeneration [58]. Type II collagen and 
polyproteoglycan are produced by NPCs and play 
an important role in maintaining the flexibility and 
compression function of the IVD. The decrease in its 
content is the initial factor of IDD because it changes 
the integrity of the biomechanical structure of the 
IVD and destroys the metabolic balance of the ECM. 
Under the stimulation of pathological conditions, 
inflammation-related pathways are activated, and 
matrix-degrading enzymes, whose main function is 
to degrade type II collagen and polyproteoglycans in 
NPCs, are promoted to secrete. In degenerative NPCs, 
the content of type II collagen and polyproteoglycan 
decreased, while the cell matrix-degrading enzyme 
content increased. The degree of change was related 
to the degree of cell degeneration.

In addition, the content of some apoptosis-related 
marker proteins can also be used to evaluate the de-
gree of cell degeneration. Beta-galactosidase (β-galac-
tosidase) (senescence-associated beta-galactosidase 
[SA-β-gal]) is found only in degenerative senescent 
cells and accumulates gradually with cell degenera-
tion. Beta-galactosidase can hydrolyse β-galactosi-
dase into monosaccharides. A blue stain precipitate 
will appear when β-galactosidase is present under 
acidic conditions. Cell degeneration can be further 
evaluated by observing the colour of the precipitate 
under a microscope [20]. There is a close relation-
ship between caspase-3, B-cell lymphoma 2 (Bcl-2), 
Bcl-2-associated X protein (BAX), and apoptosis [109]. 

Caspase is a cysteine aspartic acid-specific protease 
in the cytoplasm, which is homologous to the suicide 
gene cell death protein 3 in nematodes and plays an 
important role in the process of cell senescence and 
degeneration [29]. B-cell lymphoma 2 contains two 
proteins: bcl-2 α and bcl-2 β. The bcl-2 α protein is 
an integrin of the mitochondrial membrane and plays 
a role in anti-apoptosis [85]. The BAX protein is inac-
tive when it does not receive apoptosis stimulation. 
After it is activated, it can destroy the integrity of the 
mitochondrial membrane, antagonize the function 
of Bcl-2, and promote apoptosis [91]. The effect of 
establishing an NPC degeneration model can be eval-
uated by the content changes of the above indexes.

The cell oxidation ability can also be used to evalu-
ate cell degeneration. Peroxidation often leads to cell 
dysfunction-induced degeneration, and malondialde-
hyde is one of the peroxidation products. The level 
of malondialdehyde content indicates the degree of 
cell damage and degeneration [38]. Superoxide dis-
mutase and deacetylase are related to antioxidation 
[77, 114], and the level of these enzymes reflects 
the intracellular oxidation state and can be used as 
a detection index for the construction of an NPC 
degeneration model. 

The key index to evaluating the modelling mode 
is to ensure the cell survival rate and successfully 
construct the degeneration model. The best way to 
induce degeneration is to have both the minimum 
cytotoxicity or damage and subsequently meet the 
needs of the experimental model. This makes it nec-
essary to try different variables in the same way, 
such as intensity, concentration, time, etc., and use 
evaluation indicators to select the best treatment 
conditions. In this paper, different modelling methods 
are classified and summarised from the aspects of 
physics, chemistry, and biological engineering. The 
results of the same treatment methods and different 
treatment conditions are compared, and the best 
treatment conditions of the current research methods 
are selected (Table 1) [7, 9, 10, 17, 18, 28, 33–36, 39, 
41, 44–46, 48, 50, 52, 56, 60, 62, 64–67, 70, 72, 80, 
92, 102, 105, 107, 108, 111, 115–118, 120–122, 124].

CURRENT CHALLENGES
The physical modelling method is simple and con-

trollable, causes less damage to cells, and is similar to 
the natural degeneration of NPCs, which is suitable 
for the pathological mechanism study. The modelling 
method is still not comprehensive, as treatments such 
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as radiation, ultraviolet irradiation, current stimula-
tion, low-temperature induction, and other cell mod-
elling methods have not yet been applied. Chemical 
modelling has a variety of methods, short modelling 
times, and is practically simple. It is widely used to 
study the relationship between inflammation, oxida-
tive stress, autophagy, and IDDs, but it causes varying 
degrees of damage to cells. A reasonable induction 
dose is particularly important for the success or failure 
of this modelling. The stability of the cell model con-
structed by a biological or bioengineering method is 
relatively poor, and it is not widely used at present. It 
is necessary to further explore the optimal conditions 
and optimize the induction method in the future.

Whether physical, chemical, biological, or bioen-
gineering methods are used, the purpose of inducing 
cell degeneration can be achieved by simulating 
the changes in external stimulation conditions of 
NPCs. Some of the mechanisms of cell degeneration 
overlap; for example, hypoxia induction can cause 
cells to produce oxidative stress and degenerate, 
similar to using stressors to stimulate NPCs in chem-
ical modelling methods. In the biological induction 
method, part of the reason for the construction 
of the NPC degeneration model with a microbial 
co-culture may be the inflammatory response of 
cells stimulated by microorganisms, which partially 
overlaps with the mechanism of the cell degenera-

tion model constructed by inflammatory factors in 
chemical methods. Although there may be the same 
mechanisms in different induction methods, the oc-
currence and development of IDD involve multiple 
factors and stages. The in vitro model construct-
ed by different methods can simulate the key sites 
or stages of specific lesions, which is conducive to  
a comprehensive and detailed study of IDD’s aetiol-
ogy and pathological mechanism.

Intervertebral disc degeneration resulting in pain 
and abnormal function of lower limbs, has become 
a serious problem in modern society, causing a huge 
economic burden [21]. Traditional surgery and drug 
therapy cannot satisfy the fundamental treatment 
goals. Changing IDD at the cellular, molecular, and 
genetic levels is the research goal for most research-
ers because in vitro experiments are controllable and 
accessible [26, 103]. The NPC degeneration model is 
an indispensable step in studying IDD’s occurrence, 
so choosing a reliable, feasible, and appropriate mod-
elling method is highly important to explore IDD’s 
aetiology and pathogenesis.

CONCLUSIONS
Nucleus pulposus is located in the centre of an-

nulus fibrosus and between the superior and inferior 
endplates. It has strong toughness and is an impor-
tant part of maintaining the balance and stability of 

Table 1. Common methods of constructing nucleus pulposus cell degeneration model and optimal treatment conditions

Research style Modelling approach Optimum condition References

Axial compression The cells are placed in a pressurizing device 
that increases the pressure

Pressure value: 1 MPa;  
Treatment time was 36–48 h

[9, 36, 44,  
45, 105]

Cyclic tension stretching The cells are stimulated by periodic stretching Tensile strength: 20%; Frequency: 1 Hz;  
Processing time: 4 to 6 h

[107, 115, 118]

Hypoxia-induce Reduce the oxygen in the incubator Oxygen content: 1%; The treatment time is 24 h [10, 39, 50, 56]

Hypertonic-induce Increase osmotic pressure of culture medium Osmotic pressure: 550 mOsm/kg;  
Processing time: 3–7 days 

[18, 41, 111]

LPS-induce An appropriate amount of LPS was added  
to the culture medium

Concentration: 10 µg/mL;  
The processing time is 48 h

[17, 60, 62, 116, 
121, 124] 

IL-1β-induce An appropriate amount of IL-1β was added 
to the culture medium

Concentration: 10 ng/mL;  
The treatment time is 24 h 

[7, 34, 48,  
80, 117]

H2O2-induce An appropriate amount of H2O2 was added  
to the culture medium

Dose: 400 µmol;  
The treatment time is 24 h

[35, 64, 72,  
102, 120]

TBHP-induce An appropriate amount of TBHP was added 
to the culture medium

Dosage: 50 µmol;  
The treatment time is 24 h

[70, 46, 67,  
108, 122]

Duplicator method Cells were cultured by multiple passages Passage times: 6 generations [28]

Gene knockout Knockdown of specific coding genes Gene name: hsa_circ_0059955 [52]

Biological induction method Co-culture with sustenance Microorganism: P. acnes [33, 65, 66, 92]

IL — interleukin; LPS — lipopolysaccharide; TBHP — tert-butyl hydrogen peroxide
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IVD. The notochord cells originating from the meso-
derm are wrapped in connective tissue derived from 
osteogenic knots and develop into nucleus pulposus 
tissue in the early stage of the embryo [82, 96]. There-
fore, there are chordate cells with large shape and  
a large number of vesicles in the early nucleus pulpo-
sus. With the maturation of the IVD, the composition 
of the nucleus pulposus changed: the number of 
large vacuolar cells considered to be the origin of the 
notochord decreased and gradually transformed into 
small chondrocyte-like cells with smaller morphology 
and no vesicles [11, 86]. With the “disappearance” 
of notochord cells in human nucleus pulposus, some 
signs of early IDD, such as decreased water content 
of nucleus pulposus and microfissures of annulus fi-
brosus, began to appear. Based on this phenomenon, 
many scholars speculate that early IDD occurs with 
the disappearance or degeneration of notochord cells 
[94]. However, in some animals, such as rabbits, cattle 
and dogs, there are a large number of notochord 
cells in the nucleus pulposus, and there is almost no 
degeneration of the IVD [40]. Therefore, based on 
the fact that IVD cells are different from human IVD 
cells, there are some drawbacks when using animal 
models; they do not mimic the pathological changes 
of human degenerative IVD diseases.

Intervertebral disc degeneration is a multi-factor 
and complex process, and the changes in external 
stimuli and internal physical and chemical properties 
are the two core elements of IDD. A variety of provid-
ed animal and cell models assist greatly in in-depth 
studying and overcoming the mechanism of IDD. 
Compared with animal models, cell models have the 
advantages of short modelling cycles, economic fac-
tors, obvious effects, and a better ability to simulate 
the internal environment. In constructing an NPC 
degeneration model, the physical modelling method 
can be the most similar to the NPCs’ natural degen-
eration, and the biological and chemical modelling 
methods can simulate the pathological environment 
to construct the model quickly. However, it is difficult 
to produce an in vitro model of NPCs induced by  
a single factor that meets the aetiology and patho-
genesis of IVDD. Second, chemicals and microorgan-
isms cause rapid degeneration through different de-
grees of cell damage. This is quite different from the 
degenerative cells in natural environments. Although 
the replicated model causes the least damage to the 
cells, the stability of the model is poor, and it is easy 
to generate apoptosis.

In summary, little is currently known about the 
cellular process of IDD’s occurrence and development. 
Although the in vitro model cannot fully simulate 
the aetiology and pathological mechanism of IDD, 
researchers can choose a model reasonably according 
to the phenotype or pathogenic pathway due to the 
in-depth study of these in vitro models. To further 
optimise the construction mode and evaluation cri-
teria of the cell model in the future, a suitable model 
can be constructed for pathological research or drug 
screening through differentiation analysis with natu-
ral degenerative cells to provide materials and basic 
data for exploring the mechanism and treatment 
strategy of IDD.
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