A case of atlanto-occipital fusion with other multiple anatomic variations

Authors: H. Yang, J. Li, L. Liao, Y. Li

DOI: 10.5603/FM.a2021.0069

Article type: Case report

Submitted: 2021-06-07

Accepted: 2021-07-06

Published online: 2021-07-21

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited.

Articles in "Folia Morphologica" are listed in PubMed.
A case of atlanto-occipital fusion with other multiple anatomic variations
H. Yang et al., A case of atlanto-occipital fusion with other multiple anatomic variations

H. Yang*, J. Li*, L. Liao, Y. Li
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China

Address for correspondence: Yikai Li, School of Traditional Chinese Medicine, Southern Medical University, No. 1838, North of Guangzhou Great Road, BaiYun District, Guangzhou, Guangdong Province, 510515, China, Mob: +86 13114466285, e-mail: 1065485398@qq.com, ortho@fimmu.com

*These authors contributed equally to this work. Han Yang is the first author, and Junhua Li is the co-first.

ABSTRACT
In the routine anatomic measurement study on Asian dry skulls, a skull of atlanto-occipital fusion with other multiple anatomic variations was observed. The entire right half of the atlas vertebra, including the anterior arch, anterior tubercle, posterior arch, and lateral masses, was fused entirely with the occipital bone, while the left fused partly. Besides the atlanto-occipital fusion, the target skull specimen also includes posterior arch defects of the atlas, metopic suture, wormian bones. So many anatomy variations rarely exist in one specimen. This paper aims to present detailed anatomic case reports and discuss related diseases in an anatomic and clinical study.

Key words: atlanto-occipital fusion; metopic suture; anatomic variations; skull
INTRODUCTION

The atlanto-occipital fusion (AOF) is also known as atlas occipital ossification, atlas assimilation, or atlas occipital fusion. It is a congenital osseous or fibrous anomaly caused by the partial or complete fusion of the atlas to the occipital bone[1]. The range of AOF involves any part of the atlanto-occipital joint, and most of the fusion is asymmetrical. According to the degree of atlas and occipital fusion, it can be divided into two types: complete atlanto-occipital segment insufficiency, that is, complete atlas fusion with the edge of the occipital foramen magnum; partial atlanto-occipital segment insufficiency, which is often separated by atlas anterior arch fusion and posterior arch separation, one occipital condyle fuses with the superior articular surface of the atlas, but the other side is not fused[2].

The AOF was first described by Rokitansky in 1844 and demonstrated roentgenographically by Schuller in 1911[3]. According to the report, the incidence of AOF ranges from 0.14% to 0.75% of the population[4]. As more profound research goes, it was found that the prevalence ranges from 0.08% to 2.79% of the general population; males and females were equally affected but may differ in races[5]. Individuals with AOF may have a low hairline, torticollis, restricted neck movements with or without abnormal short neck[6].

Vault consists of several curved plates separated by sutures rather than a single bone. The metopic suture (MS) is one of the primary sutures of the skull, which is located on the left and right sides of the frontal bone[7]. As people age, the cranial sutures fuse gradually transformed the skull into a single, rigid element. The MS unites and disappears early in life, but there is no conclusion about the fusion time. Rice DP thinks that the MS fusion starts at the age of one and completes before seven[8]; others’ opinions occur at three years old; however, most authors believe it ends before nine months[9, 10]. The premature closure of MS will cause trigonocephaly and affect brain development in turn. It is still unclear why the closure of MS continues into adulthood. The existence of the MS in an adult cranium is described as a median frontal suture or a persistent metopic suture[11]. It is generally recognized as a normal variation. Studies
have reported that the incidence of MS is 2.20%–8.1%. Meanwhile, racial and gender factors vary in MS[11, 12].

This report presents a rare case of AOF, posterior arch defects of the atlas (PADA), MS, wormian bones (WBs). The specimen was an adult male and belonged to the Southern Medical University, China.

CASE REPORT

In this specimen, the left anterior arch of the atlas and the anterior tuberosity were partially fused with the occipital bone, and the right anterior arch and the anterior tuberosity were completely fused with the occipital bone (figure 2).

The posterior arch of the atlas was deficient, and the posterior tubercle was absent. The right posterior arch was shorter (29.9 mm) and completely fused with the occipital bone (Figure 2b). In comparison, the left posterior arch was longer (36.2 mm) and incompletely fused with the occipital bone (Figure 2a). Findings indicate that the shape of the posterior cranial fossa is significantly associated with occipitalization with and without cleft of the posterior arch of the atlas[13]. The fusion typically involves the anterior arch and foramen magnum; the posterior fusion involving lateral masses or the posterior arch is comparatively uncommon.

The distribution of the left and right mass of the atlas is asymmetrically fused with the occipital bone, the articular surface of the left mass is oval and small (transverse diameter: 17.9 mm, vertical diameter: 15.8 mm), and the articular surface of the right mass is irregular and large (transverse diameter: 20.1 mm, vertical diameter: 17.4 mm), which leads to the irregularity of occipital foramen shape (sagittal diameter: 36.4 mm, transverse diameter: 32.1 mm) (Figure 1b). The studies suggest a fusion between AOF and the dimensions of the foramen magnum that the sagittal dimensions and area of the foramen magnum were significantly smaller in skulls with occipitalization[13].

Foramen magnum is an important landmark, which is closely associated with the brainstem and spinal cord[14]. AOF, reduced foramen magnum and basilar invagination which may compress the medulla-spinal cord transition and the spinal cord or brain stem[15].
In addition, we found the disclosure of the MS in the skull of this case (Figure 1a). The MS is complete, and the length from the bregma to the nasion is about 132 mm (Figure 1c). In this case, there are multiple WBs in the lambdoid suture (Figure 1d).

DISCUSSION

The same specimen appeared many anatomy variations are rare. An early defect in embryogenesis is postulated for such a combination, which may exemplify specific associations in which multiple embryological abnormalities were present.

The process of endochondral ossification develops the bony cranial base, and a combination of bony accretion and sutural growth is necessary for its development. The absence of both cartilaginous and bony components of the posterior elements implies a very early defect in embryogenesis[16, 17]. AOF usually refers to the anatomic form of atlas and occipital bone not separated as scheduled during embryonic development. The congenital fusion of AOF includes a bony or fibrous fusion of part and all of the atlas anterior arch, posterior arch, and lateral mass with the occipital bone. And it is often accompanied by cervical 1-2~C1-2~instability~cervical 2-3 (C2-3) fusion, basilar invagination, occipital dysplasia, Kleipper-Feil syndrome, and other diseases. It is a common congenital craniocervical junction malformation[18-21].

As early as the 5th-6th week of the embryonic stage, the earliest vertebral body embryo was formed in the upper half of the next vertebral segment and the lower half of the upper vertebral segment. The atlas formation occurs primarily by the first spinal sclerotome, with a minor contribution from the proatlas[3]. In the vertebral chain of the human, the spine undergoes chondrification and ossification, and the 1st-4th occipital segments fuse each other to form the base of the occipital bone. The head end of the 4th occipital segment fuses with the 1st cervical segment to form the atlas, and the acquired AOF is caused by incomplete segments[22]. AOF is usually congenital, but it may result from a disease such as osteomyelitis, arthritis, syphilis, or tuberculosis in rare cases.

The skeletal dysplasias are often associated with structural weakness and collapse of the skeleton[16]. Children affected by spondyloepiphyseal dysplasia, achondroplasia,
and other forms of dwarfism have an increased incidence of craniovertebral abnormalities. There are various congenital, hereditary, developmental, and acquired abnormalities at the craniovertebral junction, either individually or in combination. A significant number of children had both neural as well as osseous abnormalities.[22] Still, the studies indicate that occipitalization is associated with the surrounding bony structures and not with the craniofacial morphology in general[13, 23]. So we can’t make a diagnosis just by the surface; detailed radiologic studies, possibly with volumetric reconstructions, are necessary in cases of AOF before surgical interventions in the region of craniovertebral junction[23].

The MS may reside as a partial pattern or a complete pattern. The partial patterns expand upward from the nasion or downward from the bregma, different from the completes spanning from the bregma to the nasion[11, 24, 25]. The suture forms from the bregma and performs toward the nasion. Inversely, the suture closes from the nasion toward the bregma[26]. Studies have shown that 91.66% of skulls with MS are associated with Wormian Bones[27].

The MS plays an important role in the shaping of the skull during the delivery of the baby. Because the baby has to be squeezed through the pelvis during delivery, and due to many changes in bipedalism, the shape of the maternal pelvis is short and wide. In terms of modern women, the average sagittal plane of the entrance to the pelvis is 113 mm, which is lower than 124 mm of the newborn’s head. Therefore, cranial sutures such as MS can deal with strain by dissipating tension and shear force to help babies squeeze through the birth canal. The high incidence of up to 30% of parturition complications associated with MS has been confirmed[28]. Another study model the effect of brain growth on cranial bones by means of finite-element analysis and geometric morphometric techniques, further elucidated the relationship between cranial sutures and brain development[29].

MS may be confused with midline fractures of the frontal bone in radiology in terms of clinical significance. In addition, studies have shown that MS is associated
with other clinically significant findings, such as frontal sinus abnormality, cleft lip, visceral inversion, cleft palate, cretinism, and intelligence[11, 30-32].

In addition, this paper also discusses the causes of this congenital malformation from the perspective of embryology. The knowledge of this uncommon anatomic variation is imperative for radiologists, neurologists, and neurosurgeons[3].

CONCLUSIONS

We reported a case of atlanto-occipital fusion with other multiple anatomic variations, So many anatomy variations rarely exist in one specimen. Such a report presents detailed anatomic case reports and discusses related diseases in an anatomic and clinical study.

Declaration Statements

Conflict of interest: The authors declare no conflict of interest for this study.

Acknowledgments: The authors sincerely thank those who donated their bodies to science to perform anatomical research. Results from such research can potentially increase humanity's overall knowledge that can then improve patient care. Therefore, these donors and their families deserve our highest gratitude.

REFERENCES

Figure 1. **1a** MS metopic suture. **1b** AOF atlanto-occipital fusion; PADA posterior arch defects of the atlas. **1c** MS metopic suture. **1d** WBs wormian bones.
Figure 2.
2a The left posterior arch was incompletely fused with the occipital bone (arrow).
2b The posterior arch defects of the atlas, and the posterior tubercle was absent (arrow). The right posterior arch was fused entirely with the occipital bone (arrow).
2c Partial fusion of the left anterior arch and anterior tubercle of the atlas with the occipital bone, and complete fusion of the right anterior arch and anterior tubercle with the occipital bone (arrow).