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Background: The interest in the morphological development of brain structures 
during childhood and adolescence arises from discussions on subcortical anom-
alies and sexual dimorphism, from adolescent changes in cognitive functions 
supported by cortical and subcortical structures to a wide range of childhood 
neuropsychiatric diseases. This study aims to investigate the subcortical structures 
regarding age/gender changes in the healthy adult human brain using web-based  
volBrain. 
Materials and methods: In this study, 303 normal healthy adults (males and 
females) were examined using a 1.5 T unit with a 20-channel head coil. 
Results: The volumes of white matter, grey matter, total brain, cerebrospinal 
fluid, and total intracranial volume were significantly higher in males than those 
in females. Our analysis revealed a significantly larger accumbens volume in fe-
males. With the age of less than or equal to 50 years, older males were found 
to have higher total lateral ventricle, putamen, thalamus, amygdala, cerebrum, 
white matter and grey matter volumes than females. In the age group of 50 years 
and older mean total volumes of thalamus, globus pallidus and accumbens were 
higher in females than those in males. Right hemisphere volumes in younger and 
older age groups were higher except for caudate volume in the older age group; 
the mean of caudate was significantly higher in females than those in males. 
Conclusions: These conclusions might be important for the explanation of the 
effects of gender and age in cross-sectional structural magnetic resonance imag-
ing studies. Also, knowing the volume changes of the subcortical structures can 
provide convenience about the prevention, diagnosis, and treatment of various 
neuromental disorders. (Folia Morphol 2022; 81, 2: 294–306)
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INTRODUCTION
Magnetic resonance imaging (MRI) allows exami-

nation of brain parts in a noninvasive way and in vivo. 
This is significant in studying the pathogenesis and 
pathophysiology of neurological disturbances [18]. 
There are many volumetric brain studies that show 
neuroanatomical disorders in MRI [14]. 

Previous studies have reported an increase in the 
volume of basal ganglia in schizophrenia [8]. Howev-
er, new volumetric studies have reported a decrease 
in the volume of basal ganglia such as putamen, 
caudate, thalamus [17, 19, 32].

Autopsy studies show that brain weight decreases 
by at least 10% in men and women between the ages 
of 25–75, also in the age range of 50–75, the volume 
decreases by about 2% every decade [4].

The brain differs depending on age/gender. Variety 
can be measured in vivo with MRI. The volumetric 
MRI analyses indicate that age-associated volume 
reductions have been reported especially for basal 
ganglia such as the thalamus, caudate, putamen, 
globus pallidus (GP) [2, 22]. 

There are many studies about basal grey struc-
tures’ volume depending on age and gender using 
different methods [17, 24, 25, 31, 32].

Studies on volume indicated a negative proportion 
among age, sex, and basal ganglia volumes [1]. Male 
caudate volume is higher than female [11].

There are many reports to support the effect of 
subcortical volumes in gender-specific neuropsychi-
atric disturbances (e.g. autism, schizophrenia, Parkin-
son’s disease, attention deficit hyperactivity disorder, 
and addictions) [5, 35, 38]. 

Recently, different techniques have been studied for 
automatic or semi-automatic segmentations of subcor-
tical structures, such as software for analysis and visual-
isation of functional magnetic resonance neuroimages 
[10], BrainVoyager [15], FreeSurfer [12, 41], Mristudio 
[21, 26] and statistical parametric maps [2] — software 
used to analyse the structural features of the human 
brain. volBrain is an automated method where the 
observer can perform fully automatic segmentation 
using a web-based application. Recently, volBrain has 
been used for a neuroimaging study of MRI data [23].

volBrain is an automatic and sturdy quantitative 
analysis system that also gives a result in a short time. 
In our study, we share the results of the MRI study 
on the effects of age on subcortical structures using 
volBrain. All participants consisted of 303 subjects 
aged from 12 to 84 years (113 men, 190 women).

MATERIALS AND METHODS
Participants 

All participants provided written informed consent 
for the relevant studies and ethical approval was 
obtained from the Dışkapı Training and Research 
Hospital Clinical Research Ethics Committee. Research 
was conducted on human participants. All proce-
dures performed in this study comply with the ethical 
standards of the institution. Approval was obtained 
from the Ethics Committee of Dışkapı Yıldırım Beyazıt 
Training and Research Hospital, indicating that the 
MRI used in the study were ethically and scientifically 
safe (Ethics Committee’s decision date: 06.08.2018; 
Decision number: 53/05).

The study group consisted of healthy volunteers 
with no history of surgery or trauma of the brain, neu-
rological or psychiatric disease, or substance abuse. 

A mini-score assessment was performed in order 
to rule out psychiatric disease as well as cognitive 
impairment. Finally, our study group consisted of 
303 participants. Participants included 113 men and 
190 women with a mean age of 49 years (range: 
12–84) and 42.5 years (range: 11–82), respectively. 
Informed consent was obtained from parent and/
or legal guardian for human participants under the 
age of 18. Children under the age of 18 came to the 
hospital with their parents, and brain MRI radiographs 
were taken after obtaining informed consent from 
the parents.

MRI protocol and segmentation method
Magnetic resonance imaging of the subcortical 

structures was acquired on a 1.5 T unit (Magnetom 
Aera, Siemens, Erlangen, Germany) with a 20-chan-
nel head coil. The subcortical volumetric assessment 
was conducted on sagittal oblique T1-weighted 
images obtained perpendicular to the long axis of 
the subcortical structures. A magnetisation pre-
pared rapid acquisition gradient echo sequence 
(MP-RAGE) was used with the following parameters: 
repetition time = 2400 ms, echo time = 3.54 ms,  
field of view = 240 mm, slice thickness = 1.2 mm, 
voxel size = 1.3 × 1.3 × 1.2 mm. 

Magnetic resonance imaging data processing 
and subcortical volumetric analyses were performed 
using volBrain (v.1.0, http://volbr ain.upv.es), a free  
online MRI brain volumetry system. volBrain is a fully 
automated segmentation technique of which the 
algorithm is based on multi-atlas patch-based label 
fusion segmentation technology (Figs. 1, 2) [9, 23].
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Statistical analysis

The distributions of age and volume measurements 
were examined by the Shapiro-Wilk’s test and normal-
ity plots. All continuous variables were reported as 
median (range). Total and side volumes were also sum-
marized by mean ± standard deviation (mean ± SD).

Genders were compared by the Mann-Whitney 
U test for age and volume measurements. Addition-
ally, independent samples t-test was performed in 
comparison between males and females for normally 
distributed volumes in the oldest age group. The 
adjustment of age and total intracranial volume (TIC) 
was also applied for the comparisons of volumes by 
general linear model procedure. Intracranial volume 
(ICV) was used as a covariate to compare the volumes 
of males and females in age groups. The volumes 
of the left and right hemisphere of the brain were 
compared by the Wilcoxon test in males and females, 
separately. A p-value < 0.05 was considered as sta-
tistically significant.

Statistical analyses were performed via IBM SPSS  
Statistics 22.0 (IBM Corp. Released 2013. IBM SPSS 
Statistics for Windows, Version 22.0. Armonk, NY: IBM 
Corp.).

RESULTS
Global effect of aging

The median age of men and women was 49 (range: 
12–84) and 42.5 years (range: 11–82), respectively. 
There was no significant difference between men and 
women by age (p = 0.071). The volumes of white 
matter (WM), grey matter (GM), total brain (TB), cer-
ebrospinal fluid (CF), and TIC were significantly higher 
in males than females (p < 0.001 for all,  Table 1).

Gender differences for subcortical nucleuses

The univariate analysis revealed that the volumes 
of lateral ventricle (LV), putamen, GP, amygdala, cere-
brum, WM, and GM were significantly higher in men 
(p < 0.05, Table 2). When the adjustment according 

Figure 1. Fully-automated subcortical segmentation by volBrain.

Figure 2. Three-dimensional visualisation of volBrain data.
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to the age and TIC was applied, the only significant 
difference was in accumbens volume between males 
and females; it was found to be higher in women 
compared to males (p < 0.001) (Fig. 3).

Side differences 

The right brain volumes were significantly lower 
for LV, putamen, accumbens and WM, and higher 
for caudate than those of the left brain in males. The 
right brain volumes were significantly lower for LV, 
putamen, thalamus, GP, amygdala, accumbens and 
WM, and higher for caudate and GM than those of 
the left volumes in females (Fig. 4, Table 3).

Gender differences in the younger age group

When the individuals with age less than or equal 
to 50 years were examined, males were found to have 
higher total LV, putamen, thalamus, amygdala, cere-
brum, WM and GM volumes than females (p < 0.05,  

Table 4). However, ICV-adjusted total accumbens 
mean in females was found to be higher than those 
in males (p = 0.008) (Fig. 5, Table 4).

Table 1. Age and volume distributions in males and females

Male (n = 113) Female (n = 190) Total (n = 303)

Age [years]* 49 (12–84) 42.5 (11–82) 45 (11–84)

Volumes [mm3]**:

White matter 530.16 (317.29–785.44) 477.73 (215.18–1,027.72) 493.35 (215.18–1,027.72)

Gary matter 719.07 (401.78–929.19) 661.45 (242.56–903.33) 681.21 (242.56–929.19)

Total brain 1,241.83 (862.18–1,548.87) 1,151.11 (644.70–1,475.80) 1,183.99 (644.70–1,548.87)

Cerebrospinal fluid 242.30 (101.99–518.05) 178.46 (62.79–596.96) 195.09 (62.79–596.96)

Total intracranial 1,494.78 (1,146.07–1,866.76) 1,329.50 (941.06–1653.44) 1,374.51 (941.06–1,866.76)

Data are shown as median (minimum–maximum);*p = 0.071, **p < 0.001

Table 2. Distribution of subcortical volumes in males and females

Male Female P-value Adj.
p-valueMean ± SD Median (min–max) Mean ± SD Median (min–max)

LV 23.08 ± 18.04 16.96 (2.20–83.92) 13.48 ± 15.88 9.75 (2.09–149.93) < 0.001 0.260

Caudate 7.01 ± 1.54 6.81 (4.39–18.92) 6.82 ± 0.97 6.75 (4.41–11.55) 0.354 0.265

Putamen 8.49 ± 1.69 8.31 (5.52–21.97) 8.07 ± 1.08 8.11 (3.60–13.41) 0.012 0.785

Thalamus 11.04 ± 2.13 11.07 (6.86–27.04) 10.69 ± 1.28 10.75 (6.51–14.64) 0.178 0.293

GP 2.39 ± 0.44 2.37 (1.27–5.10) 2.26 ± 0.35 2.27 (0.68–3.14) 0.021 0.276

Amygdala 1.77 ± 0.34 1.78 (0.44–2.60) 1.64 ± 0.31 1.68 (0.04–2.65) < 0.001 0.635

Accumbens 0.66 ± 0.18 0.67 (0.04–1.08) 0.68 ± 0.16 0.68 (0.07–1.11) 0.347 < 0.001

Cerebrum 1,088.94 ± 119.37 1,090.01 (746.69–1,345.42) 998.02 ± 106.54 1,001.35 (607.16–1,308.94) < 0.001 0.133

WM 474.60 ± 73.11 484.08 (288.09–701.24) 433.93 ± 72.21 429.58 (170.51–879.07) < 0.001 0.144

GM 614.34 ± 74.20 609.66 (348.86–814.31) 564.09 ± 70.74 555.75 (214.27–795.99) < 0.001 0.830

SD — standard deviation; LV — lateral ventricle; GP — globus pallidus; GM — grey matter; WM — white matter; Adj. p-value — p-value after total intracranial volume and age adjustment

Figure 3. Intracranial volume (ICV)- and age-adjusted mean of total 
accumbens in males and females; CI — confidence interval.
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Figure 4. Distribution of right and left sides in males and females; LV — lateral ventricle; GM — grey matter; GP — globus pallidus;  
WM — white matter.
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Gender differences in the older age group

In individuals with age greater than 50 years, the 
univariate analyses resulted in the same as in the 
younger age group. The ICV-adjusted mean of total 
thalamus, GP and accumbens volumes were higher 
in women than in men (p < 0.05) (Fig. 5, Table 4).

When left hemisphere volumes in the younger age 
group were analysed, males were found to have high-
er LV, putamen, thalamus, amygdala, cerebrum, WM 
and GM volumes than females (p < 0.05, Table 5).  
However, the ICV-adjusted accumbens mean in fe-
males was higher than that in males (p = 0.038)  
(Fig. 6, Table 5). In the older age group, the univariate 
analyses resulted in the same as in the younger age 
group. The ICV-adjusted mean of thalamus, GP and 
accumbens volumes were higher in women than in 
men (p < 0.05) (Fig. 6, Table 5). 

Right hemisphere volumes in younger and older 
age groups were almost the same as left hemisphere 
volumes, except for caudate in the older age groups 

(Table 6). The ICV-adjusted mean of caudate was sig-
nificantly higher in women than in men (p = 0.019) 
(Fig. 7, Table 6).

DISCUSSION
In our study, we measured the subcortical struc-

tures’ volumes in healthy adults between the ages 
of 20–86 and evaluated the data by age and gender.

There are many reports on the brain and subcor-
tical structures’ volumes in both sexes and different 
ages. The majority of these studies focused on the 
subcortical structures and examined age-related vol-
ume changes of various subcortical structures. It has 
been reported in various cross-sectional and longitu-
dinal studies that the volumes of caudate, thalamus 
and putamen decrease with age [6, 13, 16, 29, 30, 
32, 36, 39].

Walhovd et al. [36] studied the cortical and sub-
cortical regions of 73 men and women (20–88 years 
old) using an automated segmentation technique. 

Table 3. Distribution of right and left sides in males and females

Right Left P

Mean ± SD Median (min–max) Mean ± SD Median (min–max)

Male

LV 10.88 ± 8.69 8.38 (1.26–50.08) 12.20 ± 9.80 8.71 (0.94–43.26) < 0.001

Caudate 3.53 ± 0.80 3.48 (1.98–9.84) 3.48 ± 0.79 3.44 (0.61–9.08) 0.010

Putamen 4.21 ± 0.94 4.11 (2.16–12.05) 4.28 ± 0.80 4.20 (1.89–9.92) < 0.001

Thalamus 5.50 ± 1.13 5.49 (3.3–14.18) 5.54 ± 1.06 5.56 (3.49–12.85) 0.086

GP 1.19 ± 0.24 1.19 (0.57–2.65) 1.20 ± 0.22 1.19 (0.58–2.45) 0.639

Amygdala 0.90 ± 0.19 0.90 (0.22–1.73) 0.88 ± 0.20 0.89 (0.08–1.72) 0.061

Accumbens 0.31 ± 0.09 0.32 (0–0.54) 0.35 ± 0.10 0.35 (0.04–0.60) < 0.001

Cerebrum 544.06 ± 61.08 546.91 (373.2–671.09) 544.88 ± 60.04 544.52 (373.49–681.72) 0.494

GM 307.43 ± 38.41 304.95 (154.96–408.61) 306.92 ± 36.67 305.37 (193.90–413.49) 0.176

WM 236.63 ± 37.87 240.00 (145.54–369.85) 237.96 ± 36.33 240.44 (142.55–351.79) 0.010

Female

LV 6.35 ± 7.68 4.61 (0.91–77.38) 7.12 ± 8.35 5.10 (0.93–72.55) < 0.001

Caudate 3.43 ± 0.49 3.40 (2.19–6.17) 3.39 ± 0.50 3.33 (2.10–5.39) < 0.001

Putamen 4.01 ± 0.53 4.01 (2.49–6.69) 4.05 ± 0.57 4.08 (1.08–6.72) < 0.001

Thalamus 5.30 ± 0.65 5.34 (2.69–7.30) 5.39 ± 0.68 5.42 (3.33–8.30) < 0.001

GP 1.12 ± 0.18 1.12 (0.13–1.54) 1.14 ± 0.18 1.15 (0.46–1.59) 0.028

Amygdala 0.83 ± 0.15 0.84 (0.04–1.27) 0.82 ± 0.17 0.84 (0.00–1.37) 0.046

Accumbens 0.32 ± 0.08 0.32 (0.01–0.50) 0.36 ± 0.09 0.35 (0.02–0.64) < 0.001

Cerebrum 498.57 ± 53.79 500.42 (269.6–652.79) 498.69 ± 52.41 499.91 (337.56–656.14) 0.689

GM 282.32 ± 35.83 279.21 (109.51–398.88) 281.77 ± 35.10 279.03 (104.76–397.11) 0.012

WM 216.24 ± 35.70 214.20 (84.72–430.87) 216.92 ± 35.59 216.41 (85.79–448.20) 0.021

SD — standard deviation; LV — lateral ventricle; GP — globus pallidus; GM — grey matter; WM — white matter
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Except for pallidum, they showed age-related volume 
decrease in cortical grey matter, cerebral white matter, 
hippocampus, amygdala, thalamus, accumbens, cau-
date, putamen, pallidus, brainstem, cerebellar cortex 
and cerebellar white matter. They also found that ad-
vanced age was strongly associated with volumes of 
the thalamus and cortical grey matter, which showed 
a linear decline and curvilinear decline with age.

In our study, total thalamus, GP and accumbens 
volumes in patients older than 50 years were higher 
in women. In our findings, we did not find an age-re-
lated decrease in left thalamus volume in a similar age 
range (20–86 years) and a higher thalamus volume 
in men over the age of 50 years.

Alexander et al. [3] stated that putamen, caudate, 
accumbens and pallidum, all of which are related 
to emotional, motor behaviour and cognition, are 
blunted by aging. Basal ganglia reach a peak volume 
before the age of 20. The youngest participant in our 

study was people aged 11–84 years were evaluated. 
Therefore, the basal ganglia did not go through an 
atrophy period.

Accumbens and pallidum volumes, which are 
reported as less stable in the literature than other  
subcortical structures [16], showed a minimal age 
effect on pallidum than other structures. Walhovd 
et al. [37] examined the effects of age on subcor-
tical structures and they found great differences in 
putamen, thalamus and accumbens volume due to 
aging. Regions such as caudate and amygdala were 
not affected by aging.

In the subcortical regions such as caudate, pal-
lidum and amygdala, a linear decrease in the age-re-
lated pattern is shown [13, 29, 30]. Pfefferbaum et al. 
[27] performed MRI studies in 55 men and 67 women 
(20–85 years), and showed that older age was related 
to a decrease in thalamus volume, and this decline 
increased with age (60+ years).

Table 4. Distribution in males and females in younger and older age group (≤ 50 years old and +50 years old in total)

Male Female P-value Adj.
p-valueMean ± SD Median (min–max) Mean ± SD Median (min–max)

Younger age

LV 15.71 ± 12.65 11.27 (2.20–61.82) 10.84 ± 13.91 8.35 (2.09–149.93) 0.001 0.301

Caudate 7.46 ± 1.82 7.26 (4.39–18.92) 7.07 ± 1.01 6.97 (4.92–11.55) 0.122 0.563

Putamen 8.95 ± 2.03 8.71 (5.53–21.97) 8.43 ± 1.04 8.36 (3.60–13.41) 0.030 0.803

Thalamus 11.94 ± 2.31 11.59 (8.87–27.04) 11.18 ± 1.1 11.05 (6.51–14.64) 0.002 0.803

GP 2.48 ± 0.48 2.42 (1.27–5.10) 2.31 ± 0.38 2.35 (0.68–3.14) 0.057 0.681

Amygdala 1.84 ± 0.3 1.80 (0.87–2.60) 1.69 ± 0.32 1.72 (0.04–2.65) < 0.001 0.875

Accumbens 0.72 ± 0.18 0.73 (0.04–1.08) 0.72 ± 0.16 0.72 (0.07–1.11) 0.769 0.008

Cerebrum 1127.02 ± 104.65 1114.85 (873.65–1345 .4) 1029.7 ± 97.57 1031.47 (607.16–1308.94) < 0.001 0.133

WM 488.91 ± 64.15 489.75 (360.10–701 .24) 445.36 ± 73.99 436.82 (170.51–879.07) < 0.001 0.532

GM 638.11 ± 79.41 623.75 (348.86–814 .31) 584.34 ± 73.66 579.80 (214.27–795.99) < 0.001 0.536

Older age

LV 31.73 ± 19.63 27.27 (5.91–83.92) 18.1 ± 18.04 13.04 (3.11–114.58) < 0.001 0.068

Caudate 6.48 ± 0.89 6.55 (4.57–8.77) 6.39 ± 0.73 6.34 (4.41 –8.17) 0.551 0.072

Putamen 7.95 ± 0.94 8.01 (5.52–10.13) 7.44 ± 0.83 7.52 (5.08 –10.61) 0.002 0.594

Thalamus 9.99 ± 1.26 9.9 (6.86–12.68) 9.82 ± 1.09 9.99 (6.61–11.75) 0.433 < 0.001

GP 2.28 ± 0.36 2.3 (1.48–3.38) 2.17 ± 0.24 2.17 (1.53–2.67) 0.066 0.037

Amygdala 1.7 ± 0.38 1.69 (0.44–2.52) 1.56 ± 0.28 1.61 (0.72–2.06) 0.013 0.123

Accumbens 0.59 ± 0.14 0.6 0 (0.12–0.87) 0.61 ± 0.14 0.63 (0.34–1.11) 0.502 0.007

Cerebrum 1044.27 ± 121 1058.10 (746.69–1328.12) 942.47 ± 99.16 939.27 (712.33–1173.36) < 0.001 0.176

WM 457.8 ± 79.79 452.80 (288.09–630.98) 413.88 ± 64.73 408.89 (245.55–582.04) 0.001 0.096

GM 586.47 ± 56.6 579.86 (458.6–740.8) 528.59 ± 48.23 534.87 (350.09–638.26) < 0.001 0.969

Bold measurements are significantly higher in females than those in males after total intracranial volume adjustment. SD — standard deviation; LV — lateral ventricle; GP — globus palli-
dus; WM — white matter; GM — grey matter; Adj. p-value — p-value after total intracranial volume adjustment
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Abedalahi and Hasanzadeh [1] calculated the cau-
date volume with the Cavalieri principle. This study was 
carried out in 120 normal human subjects (60 males, 
60 females) divided into young (< 40 years) and older 
(≥ 40 years) groups between the ages of 15–65. The 
volume of caudate nucleus showed a significant neg-
ative correlation with age. Goodre et al. [16] showed 
that there was a stronger correlation between the 
age and the structural volume for the hippocampus, 
amygdala and accumbens in the older group (60–85 
years) than the middle-aged (35–60 years) group. Sim-
ilarly, in our study, 303 normal people (113 men, 190 
women) aged 11–84 were divided into young (≤ 50 
years old) and elderly (> 50 years old) groups. There 
was a significant negative correlation between the 
young group with the volume of the accumbens and 
the old group with the volume of the thalamus, GP, 
and accumbens.

Thalamic volumetric analyses showed that thala-
mus volumes were smaller in the elderly than younger 
adults using cross-sectional and automated technique 
studies [6, 36]. Cherubini et al. [6] found that age 

showed strong correlation in both striatal structures 
and thalamic volume. In our study, gender differences 
in cortical grey matter concentration were greater in 
patients aged 50 years and older than in the younger 
age group; LV, putamen, thalamus, amygdala, cere-
brum, WM and GM volumes of men were higher than 
women. However, women had significantly higher 
accumbens volume. Unlike our findings, Wang et al. 
[39] stated in their study that the volume of accum-
bens decreased with increasing age. The effect of 
gender on the volume of subcortical structures may 
play an important role because basal ganglia have 
high-density sex steroid receptors [34]. In this period, 
age and gender interaction showed that the right 
putamen and right pallidum in men had a marked 
age progression.

In general, male brains were found to have larger 
GM, WM, and subcortical structures than women. 
As a result of the correction of the total intracranial 
volume, we found that women had a larger volume 
of accumbens. In addition, in the male group only, 
we found a significant large volume effect on the 

Figure 5. Intracranial volume (ICV)-adjusted mean of total accumbens, thalamus and globus pallidus (GP) volumes in males and females of 
younger and older age groups; CI — confidence interval.
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right caudate volume compared to the contralateral 
structures of the brain hemisphere.

Ruigrok et al. [32] found that the TB volume was 
on average 8–15% higher in males than females. 
Wang et al. [39] reported that the volume of the 
right putamen, right pallidum, and right thalamus 
decreased faster in males, whereas the volume of the 
left thalamus, bilateral hippocampus and amygdala 
follow a quadratic model in males and a linear decline 
model in females. In our study, in men, LV, putamen, 
accumbens and WM volumes in the right brain were 
significantly lower than the left brain and higher than 
the left brain for caudate volume.

Xu et al. [40] found that males had atrophy due 
to aging in the basal ganglia of the left hemisphere 
and also the volume of the thalamus and brain in the 
left hemisphere was significantly smaller than the 
right hemisphere. Brain atrophy with aging in male 
patients was higher than female patients. We found 

left hemisphere volumes in males from both younger 
and older age group were higher for LV, putamen, 
thalamus, amygdala, cerebrum, WM and GM volumes 
than in females. However, accumbens volume mean 
in females was higher than that in males. Neverthe-
less, right hemisphere volumes in younger and older 
age groups were almost the same as left hemisphere 
volumes, except caudate in the older age group. The 
mean volume of caudate was significantly higher in 
women than in men.

Goodro et al. [16] found that left and right thala-
mus volume decreased faster than women. Similarly, 
in our study, the volumes of thalamus in women and 
men were different in the left and right thalamus. In 
women between the ages of 20–86, the left thalamic 
volume was higher than in men.

Although our MRI research cannot identify the 
mechanism that leads to volume differences due to 
age, it can provide additional information for the 

Table 5. Distribution in males and females in younger and older age group (≤ 50 years old and +50 years old) in left hemisphere

Left  
hemisphere

Male Female P-value Adj.
p-valueMean ± SD Median (min–max) Mean ± SD Median (min–max)

Younger age

LV 8.37 ± 7.31 5.61 (0.94–35.01) 5.65 ± 6.89 4.40 (0.93–72.55) 0.003 0.256

Caudate 3.69 ± 0.94 3.61 (0.61–9.08) 3.53 ± 0.50 3.49 (2.53–5.39) 0.119 0.520

Putamen 4.50 ± 0.94 4.43 (1.89–9.92) 4.23 ± 0.56 4.19 (1.08–6.72) 0.008 0.800

Thalamus 5.99 ± 1.15 5.91 (3.49–12.85) 5.65 ± 0.60 5.63 (3.82–8.30) 0.003 0.947

GP 1.24 ± 0.24 1.20 (0.58–2.45) 1.17 ± 0.19 1.20 (0.46–1.59) 0.167 0.464

Amygdala 0.91 ± 0.19 0.91 (0.08–1.31) 0.84 ± 0.18 0.86 (0–1.37) < 0.001 0.900

Accumbens 0.38 ± 0.10 0.37 (0.04–0.60) 0.38 ± 0.09 0.37 (0.02–0.63) 0.578 0.038

Cerebrum 563.46 ± 53.99 555.28 (434.27–681.72) 514.43 ± 47.27 514.91 (337.56–656.14) < 0.001 0.219

WM 244.64 ± 31.60 245.31 (179.41–351.79) 222.43 ± 36.28 219.81 (85.79–448.20) < 0.001 0.651

GM 318.82 ± 39.49 310.69 (193.90–413.49) 291.99 ± 36.38 290.19 (104.76–397.11) < 0.001 0.554

Older age

LV 16.70 ± 10.48 14.91 (2.38–43.26) 9.69 ± 9.98 6.44 (1.34–58.48) < 0.001 0.088

Caudate 3.23 ± 0.46 3.27 (2.29–4.33) 3.16 ± 0.39 3.12 (2.10–4.27) 0.393 0.227

Putamen 4.02 ± 0.50 4.04 (2.51–5.16) 3.73 ± 0.42 3.77 (2.58–5.26) 0.001 0.857

Thalamus 5.02 ± 0.64 4.95 (3.53–6.38) 4.93 ± 0.56 4.99 (3.33–6.11) 0.440 0.002

GP 1.15 ± 0.19 1.14 (0.72–1.66) 1.09 ± 0.13 1.09 (0.67–1.32) 0.046 0.047

Amygdala 0.83 ± 0.21 0.82 (0.22–1.72) 0.78 ± 0.15 0.79 (0.20–1.01) 0.082 0.168

Accumbens 0.31 ± 0.08 0.32 (0.09–0.53) 0.33 ± 0.08 0.33 (0.19–0.64) 0.423 0.016

Cerebrum 523.09 ± 59.90 532.08 (373.49–662.49) 471.08 ± 49.77 471.04 (350.15–588.37) < 0.001 0.301

WM 230.14 ± 40.10 227.97 (142.55–316.04) 207.24 ± 32.37 205.90 (122.11–292.40) 0.001 0.126

GM 292.95 ± 27.39 289.34 (230.94–371.23) 263.84 ± 24.02 265.02 (171.92–317.10) < 0.001 0.675

Bold measurements are significantly higher in females than those in males after total intracranial volume adjustment. SD — standard deviation; LV — lateral ventricle; GP — globus palli-
dus; WM — white matter; GM — grey matter; Adj. p-value — p-value after total intracranial volume adjustment 
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possible mechanism of sex-dependent volume differ-
ences in basal ganglia when associated with advanced 
software technology. Volume analysis of the nucleus 
accumbens helps in the evaluation of neurodegener-
ative diseases. In this context, our results are of im-
portance for gender-dependent nucleus accumbens 
volume increase.

Compared to women, men have been found to 
perform worse in the ongoing response task and 
visual-spatial learning and planning task, especially 
in older ages [7, 28]. However, some studies have not 
reported age and gender effects or different aging 
effects on cognition in men and women [20, 33].

In this study, we used an automated and relia-
ble analysis to address volumetric changes [23]. We 
presented a new method, namely, volBrain. It can be 
used in place of other volume techniques. volBrain 
has several advantages for brain imaging researchers. 
In addition, it is less tiring software that can get very 

fast results in the treatments and clinical studies in 
neurological disorders. 

The main limitation of our study is that it is not 
a longitudinal study. More participants and more 
studies are needed to confirm the findings of this 
study. Another limitation is that it is not done using 
manual volumetry.

volBrain can be used to measure volumes of oth-
er anatomical areas of the body using radiological 
images. We believe that our results will provide ad-
ditional information to volumetric studies evaluating 
the development, pathology and abnormalities of 
subcortical structures.

The results of the study demonstrated that in the age 
group of 50 years or less, males were found to have high-
er total LV, putamen, thalamus, amygdala, cerebrum, WM 
and GM volumes than females. In the age group over 50 
years, the means of total thalamus, GP, and accumbens 
volumes were higher in females than those in males.

Figure 6. Intracranial volume (ICV)-adjusted mean of left hemisphere accumbens, thalamus and globus pallidus (GP) volumes in males and 
females of younger and older age groups; CI — confidence interval.
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CONCLUSIONS
In conclusion, the results of recent research show 

that brain cortical structures and volume loss of sub-
cortical nuclei are a common finding in a number 
of neuropsychiatric problems. The data obtained in 
this study are normal brain data according to age 
and gender of the adult Turkish population. It can be 
useful in clinical applications and cognitive disorders 
of many neuropsychiatric diseases.
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