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Satellite glial cells are specialised cells that form a functional perineuronal sheath 
around sensory ganglion neurons. There are a large number of studies that reveal 
the morphological and functional characteristics of these cells. Satellite glial cells 
have been studied both in intact ganglions and in tissue cultures, using light and 
transmission electron microscopy, immunohistochemical and other methods.
Satellite glial cells have polygonal form; they are mononuclear and have developed 
synthetic organelles, numerous receptors, adhesion molecules and ion channels, 
which enable them to interact with adjacent neurons, as well as transmit signals 
in the ganglions of the peripheral nervous system. Based on the literature data, 
satellite glial cells thanks to their characteristics can receive signals from other 
cells and react to changes in their surroundings.
Previous studies have investigated the potential role of satellite glial cells in the 
formation of the blood-nervous tissue barrier of the peripheral nervous system, as 
well as in the neuropathic pain genesis. Some recent discoveries support the fact 
that satellite glial cells can participate in controlling of local viral infections and 
protecting pseudounipolar neurons from mentioned infections. (Folia Morphol 
2021; 80, 4: 745–755)

Key words: satellite glial cell, sensory ganglion, peripheral nervous 
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INTRODUCTION
A large number of scientists are researching 

the morphology and function of satellite glial cells  
and the number of studies is increasing and increas-
ing. The application of histochemical and electron 
microscopic methods in satellite glial cell research 
can contribute to the identification of complex mech-
anisms of functioning of these cells, as well as their 

role in numerous diseases of the peripheral nervous 
system ganglions [29, 38, 44, 50, 58] 

Satellite glial cells continually envelop neurons in 
peripheral nervous system ganglions. They completely 
encircle the ganglionic neurons in the form of one, and 
rarely two or three concentric layers, and together form 
morphological and functional units. The extracellular 
space between them and neurons has a diameter of 
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only 20 nm. Satellite glial cells are small, flattened, and 
interconnected by gap junctions [47, 49, 50]. The multi-
plication of satellite glial cells and the formation of sev-
eral of their layers were registered after the experimental 
disruption of the axons of the ganglion neurons [17, 41].

The close relationships between satellite and gan-
glia cells also allow them to communicate with each 
other. One of the main messengers in this communi-
cation is nitrogen monoxide [62, 66]. The protective 
role of satellite glial cells is also reflected in the se-
cretion of individual neurotrophins, which help the 
survival of ganglion neurons [66, 74].

MORPHOLOGICAL CHARACTERISTICS 
OF SATELLITE GLIAL CELLS

Short history of satellite glial cells
Small perineuronal cells, which form a cell envelope 

around the body of neurons in sensory ganglions, were 
first mentioned by Valentine, in 1836 [67]. Even Ramon 
y Cajal himself named these cells several times [54]. In 
the late 1950s, the term satellite cell was widely ac-
cepted. As the term satellite cells also refers to skeletal 
muscle fibre progenitor cells, the authors agreed to 
name them satellite glial cells, with the recommenda-
tion that their exact location should be specified (e.g. 
satellite glial cells of trigeminal ganglion) [50].

Until the discovery of the electron microscope, vari-
ous controversies arose as to whether the body of each 
neuron of the sensory ganglion was surrounded by 
satellite glial cells, since light microscopy has not always 
shown this in the past [29]. The advent of electron mi-
croscopy resolved these disputes, showing that the body 
of each nerve cell in the sensory ganglion is surrounded 
by a continuous sheath composed of discrete satellite 
glial cells [50]. Because the arrangement of satellite glial 
cells and the thickness of the sheath they build may vary 
in different areas and in different species, the fact that 
once these structures were below the resolution of light 
microscopy explains a different interpretation of the 
structure of the perineuronal sheath [44, 58]. Along 
with the development of the electron microscope, the 
resolution power of the light microscopy has grown, and 
even today, with light microscopy methods, at different 
cross-sectional levels, we can clearly see that satellite 
glial cells completely envelop sensory neurons [29, 38].

Organization of the satellite glial cells in sensory 
ganglia 

In sensory ganglions, connective tissue sharply 
separates satellite glial cells’ sheath belonging to one 

neuron from the sheaths belonging to other neurons 
(Figs. 1, 2). The outer surface of satellite glial cells, 
the one facing the interstitial connective tissue, is 
covered by a basal lamina (Figs. 1A, B). This surface 
is generally flatter than the one facing the neuron. 
In the peripheral parts of the cytoplasm of satellite 
glial cells, dense amorphous plaques may also be 
encountered, whose structure and function are still 
poorly understood. In the rabbit spinal ganglions, 
large voids (lacunae) have occasionally been observed, 
just below the outer surface of the satellite glial cell 
plasmalemma [49]. It has been observed that cilia 
and microvilli can be projected into these voids [49]. 
These lacunar spaces have been observed only in 
animal models and their significance has not been 
demonstrated so far [49].

Satellite glial cells have polygonal form; they are 
mononuclear (Figs. 1C, D), and have developed syn-
thetic organelles, numerous receptors, adhesion mol-
ecules and ion channels, which allow them to interact 
with adjacent neurons as well as to transmit signals 
in the ganglions of the peripheral nervous system 
[17]. They have very expressed granular endoplasmic 
reticulum, mitochondria, Golgi apparatus, lysosomes, 
peroxisomes [18, 20, 43]. The expressed cytoskeletal 
components are microtubules and intermediate fila-
ments, as well as occasionally present cellular inclu-
sions such as lipofuscin granules [5, 44, 45].

The cell membranes of satellite glial cells differ in 
thickness from the cell membranes of neurons [50]. 
In cell membranes of satellite glial cells treated with 
the freeze-section procedure, sets of orthogonally 
arranged particles were found [42]. The distance 
between these particles is about 7 nm [16]. Similar 
structures have been observed in astrocytes, ependy-
mal cells of higher vertebrates, while they have never 
been recognised within the cell membranes of oligo-
dendrocytes or neurons [25, 55]. These structures are 
much rarer in satellite glial cell membranes than in 
astrocyte membranes [25]. These structures were later 
shown to be constructed from the aquaporin-4 pro-
tein, a membrane protein involved in the transport 
of water across the cell membrane [55, 69].

Satellite glial cells possess long and branched 
cytoplasmic extensions, especially on surfaces fac-
ing neurons [64]. Because of the large number of 
cytoplasmic extensions of both neurons and satellite 
glial cells, it is very difficult to determine precisely the 
boundary between neurons and satellite glial cells. In 
the past, these cytoplasmic extensions were thought 
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to be the result of deformation of satellite glial cells 
due to the use of different procedures [46]. Even after 
prolonged in vitro cultivation of sensory ganglions, 

satellite glial cells have been shown to retain shapes 
similar to those observed in in vivo conditions [5, 64, 
73]. Their cytoplasmic extensions may be ring-shaped 

Figure 1. Histological characteristics of the human sensory ganglia; A. Dorsal root, spinal sensory ganglion containing clusters of round 
and oval neurons surrounded by many satellite glial cells (SGC). Fascicles of nerve fibres (red) are followed by bundles of collagen fibres 
(blue) which also separate SGC-neuron units (Trichrome Masson staining); B. Vimentin immunoreactivity detected in the cytoplasm of SGC 
(arrows), covering an ectopic, displaced neuron in the trigeminal nerve; C. Intense neuron specific enolase immunoreactivity in neurons (as-
terisks) of the trigeminal ganglion; SGC (arrows) are negative; D. Immunoreactivity against neurofilament protein in pseudounipolar neurons 
of the trigeminal ganglion; SGC do not show immunoreactivity; E. The cell bodies of foetal trigeminal ganglion (32 weeks gestational age) 
surrounded by numerous SGC (Haematoxylin staining); F. Numerous capillaries immunostained against CD34 (endothelial cells protein) around 
the SGC covering trigeminal neurons.
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or may have a lamellar shape [5, 73]. Extensions in 
cilia are also described in the literature [45]. These 
cilia lack a central microtubule pair and show only 

nine pairs of peripheral microtubules, as well as in 
neurons, in Schwann cells and astrocytes [45]. Finding 
specific receptors on the solitary cilia of particular 

Figure 2. Histology of the sensory ganglia; A. Calcitonin gene related peptide (CGRP) immunoreactivity in small to medium-sized neurons of 
the human dorsal root ganglion (arrows); satellite glial cells (SGC) are not stained; B. Substance P immunoreactivity in small to medium-sized 
neurons of the human geniculate ganglion (arrows); SGC are negative; C. S-100 proteins immunoreactivity was detected in all SGC, but in 
few neurons of the human trigeminal ganglion; D. Higher magnification of SGC positive for S-100 proteins (arrows), and negative human gan-
glionic trigeminal cell (asterisk); E. Semithin section of a rat trigeminal ganglion; trigeminal neurons (asterisks) and SGC (arrows) are shown 
(Toluidine blue staining); F. Electron microscopy of the section through the trigeminal neuron (asterisks) of a rat and two SGC (arrows) in close 
contact; 1 — capillary; 2 —  myelinated nerve fibres; 3 — Schwann cell.
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neurons supports the hypothesis that they are sensory 
specialisations [8, 26, 76]. 

Embryonic development of the satellite glial cells

Satellite glial cells of the sensory ganglia share 
a common embryonic origin with neurons [33]. Sat-
ellite glial cells of the spinal ganglia originate from 
the neural crest, and partly from neuroepithelial cells 
that migrate from the spinal cord [27, 61].

Levi [33], who has studied ganglion development 
in many species, concluded that neuronal differen-
tiation always precedes differentiation of satellite 
glial cells in sensory ganglions. In the earliest stages 
of sensory ganglion development, undifferentiated, 
rounded cells at different stages of cell division can 
be observed [33].

These still undifferentiated cells may be single, or 
in small groups, among still immature neurons [44]. 
In the early stages of embryonic development, one 
satellite glial cell is connected to multiple neurons, 
and then, as development takes place, each nerve cell 
is completely enveloped by satellite glial cells, which 
form a functional sheath around it (Fig. 1E) [44].

Satellite glial cells: the blood-nervous tissue 
barrier of the peripheral nervous system

Due to the characteristic arrangement of satellite 
glial cells and their relationships with the surrounding 
structures, we can conclude that all the molecules 
from the blood vessels of the interstitial connective 
tissue must pass through the sheath built by satel-
lite glial cells to reach neurons (Fig. 1F, 2F) [1]. Neu-
rons in the sensory ganglion lack the presence of 
the blood-nervous tissue barrier (as it is present in 
the central nervous system). As a consequence, the 
satellite glial cells’ sheath is the only to control the 
transfer of molecules to neurons [22]. Therefore, it is 
reported in literature, that satellite glial cells represent 
the blood-nervous tissue barrier of the peripheral 
nervous system, although there is a partial movement 
of substances from the connective tissue vessels to 
the neuron [22, 65]. In the 1960s, Novikof et al. [39] 
and a group of scientists proved the presence of en-
zymes such as acetylcholinesterase and nucleoside 
transferase in the spaces between satellite glial cells 
and neurons [65]. The origin of these two enzymes 
has been discussed a lot and the most accepted is the 
theory that these enzymes are generated in the bodies 
of neurons and then released into mentioned intercel-
lular spaces at axonal terminals [39]. These enzymes 

have been hypothesized to have hydrolytic properties, 
due to which they could degrade substances that have 
a potentially negative effect on neural activities [39]. 
Hypotheses have also been claimed for the interaction 
of these enzymes with transport ATPases; however, 
there are is more detailed data on this topic in the 
literature [39, 65]. The striking length and curvature 
of the path between the basal lamina and the neural 
surface slows the diffusion of the substances through 
the perineuronal sheath [22]. The barrier function of 
the perineuronal sheath may be particularly impor-
tant when neuronal moving substances are toxic. In 
old age, this function may be impaired [39]. Satellite 
glial cells are thought to influence the composition 
and density of these enzymes and other substances 
in intercellular spaces, which can control the flow of 
matter to the neuron they surround [39].

Molecular markers of satellite glial cells

We can safely say that satellite glial cells express 
a large number of proteins and adhesion molecules 
on their surface [2, 31, 36, 40, 56, 59, 62, 63, 70, 78]. 
Molecular markers are essential for the identification 
of satellite glial cells, especially when intercellular 
relationships are disturbed (e.g. in dissociated cell 
culture) (Figs. 2A, B) [59]. Among these markers is 
protein S100, which is also present in Schwann cells 
(Figs. 2C, D) [59]. The multi-selective markers of sat-
ellite glial cells are glutamate-aspartate transporter 
and glutamine synthetase [23].

The guanylate cyclase is also located within satel-
lite glial cells [31]. This enzyme is activated by nitric 
oxide (NO) released by neurons after an axonal lesion 
[62]. The NO precursor, arginine, has been detected 
in satellite glial cells, so satellite cells are thought to 
supply the neurons with the arginine required to pro-
duce NO [2]. Other molecules that synthesize satellite 
glial cells are cytokine tumour necrosis factor-alpha 
[40, 63] and prostaglandins [70].

Relationships between satellite glial cells

In certain regions of the sensory ganglions, adja-
cent satellite glial cells interconnect, while in other 
regions, forming a sheath around the common cell, 
their lamellar extensions overlap [50]. Where numer-
ous lamellar extensions overlap, multiple lamellar 
extensions may belong to the same cell, so it can 
sometimes be observed that the number of these 
lamellar extensions is greater than the number of 
satellite glial cells themselves (Figs. 2E, F) [49, 50].
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Cracks between the membranes of adjacent sat-
ellite glial cells can measure 15 to 20 nm in diameter 
[49]. These cracks open into a narrow space below 
the basal lamina at one end, and into a narrow space 
between neurons and closely spaced satellite glial 
cells at the other [44, 49]. This potential pathway be-
tween the interstitial connective tissue of the ganglia 
and the surface of the neuron usually has a long and 
twisted flow, even in areas where the perineuronal 
sheath is thin, and is thought to have some functional 
significance [44, 49, 50].

Satellite glial cells are linked to other satellite glial 
cells within the same perineuronal sheath by adherent, 
occludent connections and nexuses [35, 47]. Adher-
ent connections are small structures that resemble 
a button. These compounds have also been described 
between adjacent Schwann cells [13]. Nexuses, as con-
nections present between satellite glial cells have been 
discovered by tissue freezing techniques [42]. These 
connections have also been found in satellite glial cells 
of autonomic ganglions [14]. The presence of structures 
similar to occludent connections has also been demon-
strated [14]. Specifically, in some studies, thin filament 
structures called strands have been observed within the 
plasmalemma of satellite glial cells, which exhibit the 
same morphological characteristics as those structures 
and proteins that create occludent connections in other 
tissues [14, 47]. They were detected by the freeze-sec-
tion technique, at the plasmalemma level of satellite 
glial cells [14]. Some scientists also call them macula 
occludens [14]. Such threads are interpreted as the 
basic elements of tight, occludent connections. Their 
presence has also been demonstrated in satellite glial 
cells of autonomic ganglions [14, 70].

All of the previously mentioned types of connec-
tions probably contribute to the adhesion between sat-
ellite glial cells [42, 48]. Moreover, these relationships 
have other important roles. The inner diameter of the 
nexus channel (about 1.2 nm in size) not only allows 
the intercellular passage of ions, but also the transfer 
of molecules with molecular weights up to about 1 kD 
(e.g. signalling molecules, amino acids and glucose) 
[14, 42, 48]. Information about the compounds and 
connections that form satellite glial cells are scarce.

Connexin-43 has been identified in satellite glial 
cells of trigeminal ganglions of rats [71], murine spi-
nal ganglions [53], as well as in guinea pig ganglions 
and human spinal ganglions [35]. In perineuronal 
satellite cells of the spinal ganglions connexin-36 is 
also identified [51].

FUNCTIONAL CHARACTERISTICS OF 
SATELLITE GLIAL CELLS

Perineuronal homeostasis
Satellite glial cells play a major role in homeo-

stasis of the perineuronal environment [49]. Neural 
activity causes an increase in extracellular potassium 
concentration, resulting in increased nerve excitability 
[23]. Satellite glial cells on their surface express K+ 
channels, which play a central role in extracellular 
potassium uptake [23, 77]. Thanks to nexuses, satel-
lite glial cells rapidly distribute potassium ions among 
adjacent cells, thereby establishing perineuronal ho-
meostasis [24].

Glutamate is the major neurotransmitter present 
in sensory ganglion neurons, but it is important to 
emphasize that high levels of glutamate are neuro-
toxic [23]. Satellite glial cells express glutamate trans-
porters on their surface; so that if high concentrations 
of glutamate are released from neurons into the peri-
neuronal space, it is satellite glial cells that will remove 
excess glutamate from mentioned area [6, 23, 60]. 
In this way, they maintain glutamate concentrations 
below neurotoxic levels in the perineuronal microen-
vironment [6]. Satellite glial cells, which contain the 
enzyme glutamine synthetase, convert glutamate to 
glutamine [23, 60]. Glutamine is then returned to 
neurons and converted again to glutamate, using 
their phosphate glutaminases [60]. Since neurons 
use glutamate for synaptic transmission, we can say 
that the metabolism of sensory ganglion neurons 
itself is largely dependent on their interaction with 
neighbouring satellite glial cells [6].

In addition to the glutamate transporter, satellite 
glial cells also express gamma-aminobutyric acid re-
ceptors on their surface, which can induce the depo-
larisation of neurons by sensory ganglions [23, 60]. 
Due to the existence of these transporters, satellite gli-
al cells can control the concentration of gamma-ami-
nobutyric acid in the perineuronal microenvironment, 
and thus protect the neurons themselves from the 
effects of excessive concentrations of this acid [4, 79].

Neuroprotective role of satellite glial cells

The neuroprotective role of satellite glial cells has 
been repeatedly demonstrated [64]. The NO-cGMP 
pathway plays a major role in neuronal protection [62, 
66]. NO is generated in the bodies of neurons, thanks 
to the enzyme NO synthetase, which is present in the 
bodies of the neurons of the dorsal roots of the spinal 
ganglion [62, 66]. Whether NO plays a protective or 



751

A. Milosavljević et al., Satellite glial cells in peripheral nervous system

toxic role depends on its concentration as well as on 
its receptor concentration, soluble guanylate cyclase 
(sGC) [62]. Across the NO receptor, cyclic guanosine 
monophosphate (cGMP) activation occurs in satellite 
glial cells, and it is thought that its generation by 
satellite glial cells may limit various degenerative 
changes at the neuronal level and facilitate their sur-
vival in pathological conditions [62, 66]. Specifically, 
in nerve injury, many more ganglion neurons express 
the presence of NO synthase, whereas satellite glial 
cells express cGMP [66]. Thus, activation of cGMP, 
v62 the receptor for NO, can limit or even reverse 
degenerative changes at the neuronal level [62, 66]. 
It is thought that the interaction between NO, sGC 
and cGMP expressed by satellite glial cells facilitates 
the survival of injured neurons [66].

There are also studies showing that inhibition 
of NO synthase leads to an increase in degenerative 
changes in neurons and glia [62]. In recent years, 
several studies have reported the antiapoptotic effect 
of NO and cGMP in cultures of neurons and non-neu-
ronal cells. Although these observations suggest that 
the NO-cGMP pathway is crucial in protecting neu-
rons, the precise mechanism of these processes is 
poorly understood [66].

Phagocytic activity of satellite glial cells

Based on previous studies, it has been observed 
that fragments of degenerate cells are found within 
satellite glial cells, both in the sensory and autonom-
ic ganglions [37, 48, 52]. These findings suggest 
that satellite glial cells have phagocytic capacity, as 
demonstrated by culturing these cells in vitro [75, 77].

The role of satellite glial cells in the immune 
system

Satellite glial cells in the ganglion also have im-
mune system functions [68]. They have a leukocyte 
phenotype, with macrophage characteristics so that 
they control local virus-specific T cells and protect 
ganglion cells infected with herpes virus from damage 
as well as uninfected cells from infection [68].

Satellite glial cells and herpes simplex virus

The most studied viral infection affecting the sen-
sory ganglion is the herpes simplex virus (HSV) infec-
tion [10, 15, 21, 82]. During initial infection, the virus 
travels by retrograde axonal transport to the bodies of 
sensory ganglion neurons, in which latent infection is 
established [10]. Sensory ganglion neurons are capa-

ble of supporting complete viral replication with the 
production of mature enveloped particles [10, 15]. 
Unlike neurons, HSV infections are rarely detected 
in satellite glial cells in vivo; these cells have been 
shown to contain only undeveloped viral particles 
[10, 21]. In vivo, sensory ganglion neurons typically 
exhibit the following structural changes associated 
with HSV infection: nucleolus disruption and nuclear 
membrane reduplication [10]. Structural changes of 
organelles have been observed less frequently (some 
changes in mitochondria and dilatation of cisterns of 
the endoplasmic reticulum have been observed) [82].

In vivo neurons infected with herpes simplex per-
sist, while in culture they are destroyed by the virus 
[81]. Infected neurons are usually found scattered 
within the ganglion. The virus does not spread from in-
fected neurons to adjacent neurons probably because 
satellite cells form a barrier to the interneuronal spread 
of the virus within the ganglion [32]. In the vestibular 
ganglion, the viral particles cannot propagate from 
neurons to satellite glial cells because they cannot pass 
through the distended myelin sheath [72]. In the sen-
sory ganglions of experimentally infected mice, satellite 
glial cells proliferate, and an increase in the number of 
these cells probably facilitates neuronal survival [15].

Satellite glial cells and herpes zoster virus

In acute varicella-zoster virus infection, in sen-
sory ganglions, both neurons and satellite glial cells 
contain viral particles [80]. In the latent phase, viral 
particles are localised in sensory ganglion neurons and 
rarely in satellite glial cells [34]. Varicella-zoster virus 
(VZV) can induce fusion formation between a neuron 
and its satellite glial cells [57].

Specifically, there are studies detailing the mecha-
nisms of action of VZV itself, as well as the supporting 
role of satellite glial cells in replication of this virus 
[57]. Nucleocapsid formation occurs in the bodies 
of neurons and satellite glial cells as well as virions 
located in cytoplasmic vacuoles [57]. Certain varicel-
la zoster proteins (immediate-early [IE]) regulatory 
proteins, early ORF47 kinase, glycoprotein gE) are 
expressed both on the surface of satellite glial cells 
and on the surface of VZV-infected sensory neurons 
[57]. Viral genomic DNA has been detected in both 
nuclei of infected neurons and in nuclei of satellite 
glial cells that express a specific type of IE protein, 
called IE63 [57], on its surface. These surface proteins 
are thought to result in the fusion of cell membranes 
of satellite glial cells and neurons, as well as the 
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transfer of certain proteins and virions from neurons 
to satellite glial cells and vice versa [57]. This fusion 
allows rapid replication of the virus in the satellite glial 
cells themselves, and, much more importantly, the 
faster spread of the virus to the uninfected neurons 
(supported by the very fact that one sensory neuron 
surrounds a larger number of satellite glial cells, and 
hence the spread of the virus faster and more effi-
cient) [57]. Direct VZV infection of satellite glial cells 
could also occur during primary VZV infection, when 
the virus can gain access to sensory ganglions via the 
haematogenous pathway via VZV infection of T cells 
[15, 57]. This pathway of spread increases the ability 
of the virus to establish latency [57].

The role of satellite glial cells in neuropathic pain

Peripheral nerve injury and inflammation of pe-
ripheral tissues increase the excitability of sensory 
ganglion neurons, thereby causing their spontaneous 
activity [7]. This is a major factor in the generation 
and maintenance of neuropathic pain [9]. As de-
scribed previously, in the sensory ganglions of adult 
vertebrates, each nerve cell body is tightly enveloped 
in a single sheath of satellite glial cells, which are 
completely surrounded by connective tissue, thus 
forming a discrete unit [30]. Therefore, satellite glial 
cells are the only cells in direct contact with the bodies 
of sensory neurons. Because satellite glial cells are 
highly sensitive to changes in neurons, and because 
they have the ability to modulate neural excitability, 
these cells are thought to play an important role in the 
development and maintenance of neuropathic pain 
[12, 19, 71]. There are several mechanisms underlying 
the contribution of satellite glial cells to the hyperex-
citability of sensory ganglion neurons, and thus to the 
development and maintenance of neuropathic pain. 
Because neurons are the target of lesions, changes 
in satellite glial cells occur secondary to neuronal 
changes, upon activation of signalling mechanisms 
between damaged neurons and associated satellite 
glial cells. Neuron-released adenosine triphosphate 
can activate purinergic receptors on satellite glial 
cells, which can lead to cytokine synthesis (e.g., in-
terleukin 1p and tumour necrosis factor-alpha) [12]. 
Thus released cytokines can enhance nerve excitabil-
ity, as demonstrated in several experiments. There is 
research in which topical application of the interleukin 
1 receptor antagonist has acted on the physiological 
threshold of sensory ganglion neurons and allowed 
the reduction of peripheral neuropathic pain [12].

Peripheral nerve injury and facial inflammation 
increase the excitability of trigeminal ganglion neurons 
[19, 71]. Under such conditions, these neurons release 
K+ into the perineuronal microenvironment [23, 77]. 
The K+ concentration within this space is primarily reg-
ulated by the K+ channel Kir4.1, which is expressed by 
satellite glial cells [11]. However, peripheral nerve injury 
and facial inflammation, regulated by Kir4.1 channels 
expressed on satellite glial cells, can result in disruption 
of K+ homeostasis within the perineuron microenvi-
ronment [11, 23, 77]. Increasing extracellular K+ leads 
to an increase in neural excitability, which may further 
exacerbate neuropathic pain [11, 77].

Taken together, all these mechanisms indicate 
that Kir4.1 channels, expressed on satellite glial cells, 
have a role in the development and maintenance of 
neuropathic pain. Since the Kir4.1 channel has been 
shown to be involved in glutamate homeostasis, it is 
thought that it could contribute to neuropathic pain 
and this additional mechanism [11]. If glutamate 
is the major neurotransmitter of sensory ganglion 
neurons released into the perineuronal microenvi-
ronment, impaired glutamate homeostasis caused 
by reduction of the Kir4.1 channel may lead to an 
increase in extracellular glutamate and consequently 
to an increase in neural excitability [11].

Certain studies have shown that the number of 
communicative connections between satellite glial 
cells increases after injury to the nerves themselves 
[17, 41]. An increased number of connections be-
tween satellite glial cells may cause changes in the 
perineuronal microenvironment and thus contribute 
to the creation or maintenance of neuropathic pain 
[7, 17]. As evidence of support to this hypothesis, 
research has been conducted that showed that com-
municative linkage blockers restore nerve excitabil-
ity to baseline, control levels and thus reduce neu-
ropathic pain [7, 12]. Moreover, the application of 
polymerisation chain reaction method and the use 
of informational RNA, as a connexin neutralizer 43, 
a major structural component of satellite glial cell 
communicative connections, reduce the number of 
these connections at the trigeminal ganglion level 
and produces analgesia [53]. Following nerve injury 
or inflammation, neurotrophic factors increase the 
excitability of sensory ganglion neurons and thus 
contribute to neuropathic pain [28]. Satellite glial 
cells also express neurotrophic factors and their re-
ceptors on their surfaces, thus regulating neuropathic 
pain [74, 83]. There is also an additional mechanism 
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by which satellite glial cells may be involved in the 
creation and maintenance of neuropathic pain. Over 
the past decade, a large number of studies have been 
conducted on the relationships and connections be-
tween glial cells and neuropathic pain [7, 9, 11, 12, 
19, 30, 71]. Satellite glial cells have been found to 
undergo different changes when neuropathic pain 
occurs. Each of these changes inspired a specific hy-
pothesis about the mechanisms by which satellite glial 
cells contribute to the development and maintenance 
of neuropathic pain. However, decisive experiments 
that confirm or refute these hypotheses are lacking, 
and therefore this topic itself is insufficiently eluci-
dated and confirmed [7, 9, 11, 12].

There has been recently conducted study which 
started examining the role of satellite glial cells in 
systemic inflammation [3]. It has been hypothesized 
that satellite glial cells must play a role in chronic 
pain and that systemic inflammatory responses lead 
to changes in these cells, as do local injury. The study 
was conducted in mice whose systemic inflammation 
was induced by lipopolysaccharide injection intra-
peritoneally [3]. Satellite glial cells of mice dorsal 
ganglions were detected by immunohistochemical 
methods and electron microscopy [3, 44]. Within 
days of lipopolysaccharide injection, changes were 
observed in satellite glial cells, in the form of a large 
increase in the number of their cellular extensions, as 
well as an increase in the communicative connections 
between them. Twice the sensitivity of satellite glial 
cells to ATP has also been observed. The conclusion 
of this study is that changes in satellite glial cell levels 
are caused by systemic inflammation, similar to those 
caused by local injury [3].

CONCLUSIONS
Satellite glial cells are a structure much more sig-

nificant rather than simple morphological enclosure 
of the neuron. A continuous layer of satellite glial cells 
protects neurons and maintains homeostasis in their 
microenvironment, which corresponds to a form of 
blood-nervous tissue barrier. 

Satellite glial cells have many different receptors 
binding, among other things, various substances with 
nociceptive effect. After excitation, the satellite glial 
cells release molecules of inflammation, cytokines 
and NO, leading to sensitisation and activation of 
neurons. Thus, activation of neurons and satellite 
glial cells in a certain part of the ganglion triggers an 
inflammatory cascade involving other neurons and 

satellite glial cells. This phenomenon was observed 
in the development of the pain syndromes and could 
be also the possible underlying mechanism of chronic 
pain. Subsequently, the sGC are seen as potential tar-
gets in the practical application of the pain therapy.

The progress in understanding the sGC morphology, 
and increasing knowledge of SGC capacities in ganglion-
ic neurons homeostasis, both enable new perspectives 
of further research in this field. First, sGC have im-
mune system properties. They control local virus-specific  
T cells and protect ganglionic cells. Protective function 
of sGC needs to be evaluated in viral infections other 
than herpes virus, for example in the very topical and 
deadly coronavirus infection. Second, instead of using 
animal cells, sGC from human sensory ganglions, may 
represent a promising objective for therapeutic studies 
in pain research in experimental laboratories. Third, 
a comparative study between sGC from different types 
of ganglions, particularly autonomic, would be a prom-
ising research with original scientific importance. 
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