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Lumbar facet joints (LFJs) are diarthrodial joints which provide articulation between 
two adjacent lumbar vertebrae. LFJs represent complex anatomic structures with 
multifaceted biomechanical and functional characteristics. They are theorized 
as structures of crucial clinical significance since their degenerative morphologic 
alterations are frequently related to emergence of low back pain. Despite the 
emerging interest in describing LFJs anatomy in recent years, precise description 
of LFJs innervation remains controversial. In this comprehensive review, anatomy 
and biomechanical importance of LFJs and associated adjacent extra-articular 
structures are thoroughly presented. Furthermore, LFJs innervation in respect 
to current literature data is punctually analysed. Knowledge of anatomy and 
innervation LFJs of critical importance for clinicians and spine surgeons, so that 
patients are properly evaluated and related therapeutic procedures are rationally 
performed. (Folia Morphol 2021; 80, 4: 799–805)
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INTRODUCTION
Facet joints (FJ), which are also classically de-

scribed as apophyseal or zygapophyseal joints, repre-
sent the only synovial joints of spine [16, 26]. They are 
paired diarthrodial joints, posterolaterally articulating 
the posterior arch between adjacent vertebral levels 
[26]. Lumbar facet joints (LFJs) constitute primary 
stabilisers of vertebral column, enabling alongside 
movements as extension, flexion and rotation [4, 31]. 

The aim of this review article is to describe the 
precise anatomy of LFJs according to contemporary 
literature data. Particular emphasis is given to inner-
vation of LFJs. 

ANATOMY OF ARTICULAR AND  
EXTRA-ARTICULAR ELEMENTS

Articular processes and cartilage
Lumbar facet joints are comprised by the articu-

lation of superior and underlying adjacent vertebra 
via the paired inferior and superior articular pro-
cesses, respectively [10, 16]. The major superior and 
the minor inferior articular processes (SAP and IAP) 
represent bony protuberances, emerging vertically 
from the coalescence of pedicles and laminae of re-
spective vertebral arch, posteriorly to the ipsilateral 
transverse process [16, 26]. SAP and IAP are lined 
with articular hyaline cartilage over the subchondral 
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bone [26]. Hyaline cartilage of LFJs is characterised by 
poor vascularisation and cellular infiltration, featuring 
a considerable healing inability after traumatisation 
[24]. Articular surfaces of SAP and IAP feature a con-
sistently different morphological pattern. Hence, SAP 
are characterised by a more concave articular sur-
face, whereas IAP by a more convex one [16, 24]. In 
addition, orientation of SAP and IAP in sagittal and 
coronal planes features a noteworthy differentiation. 
IAP of superior vertebral level faces an anterior and 
lateral direction, whereas SAP lies posteriorly, facing 
medially [26].

LFJs articular cavity

Lumbar facet joints cavity may be anatomically 
divided in the FJ articular space and the FJ recesses, 
featuring a capacity of 1–2 mL [26, 36]. FJ space 
represents the anatomic space between the articular 
cartilage of articulating facets [36]. In contrast, FJ 
recesses are formed by the redundant encapsula-
tion of LFJ by capsular ligament at the superior and 
inferior parts of the joint, containing adipose tissue 
or minor synovial villi [10]. Thorpe Lowis et al. [36] 
studied 19 cadaveric specimens in order to determine 
the precise anatomic characteristics of FJ recesses 
in various spinal regions. It was concluded that FJ 
recesses presented specific characteristics in respect 
to particular intervertebral levels. LFJs recesses were 
equally large and anteromedially and posteromedially 
located. The anteromedial recess was encountered 
superiorly, emerging over the upper end of SAP of 
underlying vertebra. In contrast, posteromedial recess 
surrounded the lower edge of IAP of supernatant 
vertebra. LFJs cavity featured no direct communi-
cation with the retrodural space, demonstrating an 
anatomically clear delimitation [36]. LFJ cavity and 
recesses are detectable in radiologic evaluation with 
magnetic resonance imaging (Fig. 1). 

LFJs capsular ligament

Lumbar facet joints are, similarly to other synovial 
diarthrodial joints, completely encapsulated by a cap-
sular ligament (LFCL). LFCL is histologically composed 
by two distinct layers: an outer layer of parallel with 
lateral-medial direction and densely organized colla-
gen bundles, and an inner layer of elastic fibres with 
inconsistent orientation [5, 16]. Furthermore, LFCL 
features rich innervation with autonomic and nocice-
ptive nerve fibres, which may reproduce pain in cases 
of inflammatory or mechanical irritation [26, 31].

Lumbar facet joints capsular ligament has an im-
portant role in maintaining the stability of LFJs. The 
presence of collagen and elastin administrates sub-
stantial mechanical support against shear and tensile 
forces developed during motion and vertebral load-
ing. LFCL bears a remarkable biomechanical role dur-
ing various movements of LFJs. It is extended during 
LFJs lateral bending or rotation. Hence, lateral-medial 
orientated capsular fibres feature extension along LFJs 
direction, providing functional resistance and stabil-
ity. On the other hand, flexion or extension of LFJs 
is associated with emergence of crucial shear stress, 
transverse to LFJs direction. In this dynamic condition, 
LFCL fibres feature also a shear stress transverse to 
their alignment, providing great resistance [5].

Mammillo-accessory ligament

Mammillo-accessory ligament (MAL) represents 
a ligamentous structure bridging the bony mammil-
lary (MP) and accessory processes (AP) of the lumbar 
vertebra bilaterally. MP constitutes a circular bony 
protuberance located at the posterior border of SAP. 
AP is, on the other side, a relatively lesser and sharp-
ening bony structure encountered at the postero-infe-
rior portion of each transverse process root. Ipsilateral 
MP and AP are connected by the ligamentous MAL 
(Fig. 2) [12]. MAL constitutes a portion of the medial 
aspect of intertransverse ligament, featuring a note-
worthy tendency to ossification [31]. 

Shuang et al. [31] dissected 12 cadaveric speci-
mens, in order to determine the precise anatomy of 

Figure 1. Representation of facet joint cavity (red arrow) and the 
anteromedially located superior recess (white arrow) of L3–L4  
facet joint in a normal lumbar magnetic resonance imaging.
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medial branch of spinal dorsal ramus. It was inter 
alia concluded that the abovementioned anatomic 
structures form a true fibro-osseous canal, which is 
anatomically characterized by 4 distinct walls: a su-
perior (MP), an inferior (AP), an anterior (the bony 
groove between MP and AP) and a posterior (MAL). 
The fibro-osseous canal displays an oblique direction, 
encountered at the dorsal portion of SAP and origin 
of transverse process [31]. In the case of MAL ossifica-
tion, this canal becomes completely osseous [12, 31].

BIOMECHANICAL DATA
The three-dimensional LFJs and the anteriorly lo-

cated intervertebral disc at each lumbar spine level 
compose an anatomic entity described as spinal seg-
ment, “three-joint complex” or articular triad [15, 
16, 21, 23, 26, 32, 38]. These articular structures 
are theorised to constitute a single unit since the 
emergence of degenerative alterations in one joint 
has a subsequent influence on the biomechanical 
behaviour of the whole unit [26]. Furthermore, the 
harmonised function of these structures prevents po-
tentially injurious dynamic states, warranting along-
side physiological motional activity. 

Functionally, the intervertebral disc is majorly re-
sponsible for the transmission of axial-compressive 
forces [16]. In contrast, osseous LFJs are primari-
ly charged with the stabilization of spinal motion 
segment [2, 3, 16]. However, many biomechanical 
studies have demonstrated that LFJs also contribute 

to transfer of implemented axial compressive load on 
the spine [1, 24, 26, 28, 32]. LFJs may bear up to 25% 
of this load, depending on the motion status at each 
case [24, 41]. However, the underlying mechanisms of 
this transmission remain unclear. The nearly vertical 
inclination of LFJs articular surfaces in conjunction 
with the existent low friction considerably compli-
cates this description. Inoue et al. [16] reviewed exist-
ing literature data on the biomechanical behaviour of 
LFJs in various dynamic conditions. It was concluded 
that LFJs may contribute to axial compressive load 
transfer by three potential mechanisms: by articular 
surfaces, by LFCL and by the direct connection be-
tween the vertebral arch or the pars interarticularis 
and the tips of articular processes [16].

As stated above, LFJs have been delineated as 
the primordial lumbar spine stabilizers [22, 32]. LFJs 
stabilize the respective motion segment in extension 
and flexion, restricting also axial rotation [26, 39]. 
More specifically, medial and posterior portion of LFJs 
instates the major resistance to antero-olisthesis [3].  
Comparatively, anatomic construction of LFJs relative-
ly allows flexion-extension motions in sagittal planes, 
but noteworthy limits axial rotation, so that rotatory 
instability is prevented [32, 39]. 

Nevertheless, this motion-restrictive pattern may 
vary according to each lumbar level. This variation is 
majorly attributed to the differentiated LFJs orienta-
tion. LFJs are oriented 82–86 degrees in regards to 
the axial plane and 15–70 degrees in regards to the 
sagittal [5]. Nonetheless, LFJs orientation features 
a gradual coronal to sagittal conversion from proximal 
to distal levels [3]. At L1–L2 spinal motion segment, 
the angle between articular surfaces of SAPs is 30 de-
grees. However, this angle features a considerable 
distribution from 30 to 90 degrees in distal (L4–S1) 
segments. This peculiarity of LFJs orientation in distal 
segments is profoundly responsible for the emer-
gence of lower resistance to rotational motion [3, 22]. 
Particular anatomic studies have depicted that the 
orientation of LFJs gradually approaches the sagittal 
plane with age [19]. However, the precise contribution 
of this alteration to further degenerative damage of 
spinal segment is not adequately understood [18]. 

Lumbar facet joints tropism
Lumbar facet joints tropism (LFJT) is defined as the 

existing asymmetry between right and left LFJs angle 
[8, 13, 17, 37, 40]. Bogduk [6] initially described LFJT 
as the status where LFJs feature a rotational incongru-

Figure 2. Conceivable representation of mammillo-accessory  
ligament in an anteroposterior lumbar spine radiograph.
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ity in respect to axial plane, resulting in subsequent 
asymmetry. More recent studies identified that LFJT 
may be present in all planes. Therefore, LFJT may 
also be theorised as the subsistence of asymmetry 
between left and right LFJs angles in sagittal or cor-
onal planes as well [3, 26]. This asymmetry is in the 
majority of cases relatively negligible, under 5 degrees 
in range. There is currently no universal consensus 
about the consideration of clinically significant LFJT. 
Hence, LFJs angulation may normally vary from 5 to 
10 degrees [3].

Mohanty et al. [23] performed a retrospective 
cross-sectional study, in order to elucidate the prev-
alence of LFJT. For this purpose, 566 intact spinal 
motion segments from 124 computed tomography 
scans of spinal trauma patients were analysed. Re-
sults showed that LFJT featured greater prevalence 
in L4–L5 and L5–S1 levels, with the percentages 
of 47.82% and 38.5%, respectively. Authors con-
cluded that these results may offer an explanation 
for the more frequent occurrence of lumbar disc 
herniation and related degenerative disorders as 
lumbar arthrosis and degenerative spondylolisthesis 
encountered at these levels [23]. This thesis has been 
also adopted from other studies in recent literature 
[3, 14, 26].

Lumbar facet joints innervation
Lumbar facet joints innervation is derived by 

the medial branch of the lumbar dorsal rami, or, as 
also known, posterior branches of the lumbar spi-
nal nerves [31]. For many years, clinical importance 
of these structures was not adequately recognized. 
Hence, precise description of their anatomy was not 
present even in well-established anatomy atlases [19]. 
Bogduk et al. [7] were the first to provide a thorough 
analysis of posterior branches of lumbar spinal nerves 
anatomy in 1982.

The spinal nerve is divided into four distinct 
branches, after its exit from the respective interver-
tebral foramen; the communicating branch, the me-
ningeal branch, the ventral ramus and the smaller 
dorsal ramus (DR) [31]. At levels L1–L4, DR is sep-
arated from the spinal nerve at an approximately 
right angle [19, 29]. They subsequently traverse the 
vertebral foramen, featuring then a dorsal and caudal 
course [7, 9, 30]. DR is from that point encountered 
at the orifice formed by the superior border of the 
adjacent transverse processes and the inferior border 
of the respective LFJ [19, 20]. This final aspect of DR 

is located at the medial portion of intertransverse 
musculature (Fig. 3) [31].

Dorsal ramus bifurcates, circa 5–10 mm distal 
to the abovementioned orifice, into a medial and 
a lateral branch, forming a 30-degree angle [19, 20]. 
This division is encountered at the superior edge of 
the underlying transverse process. There are multiple 
communicating branches between the adjacent lat-
eral branches, medial branches and dorsal rami [31]. 
Nerve fibres composition for both branches is duplex, 
containing sensory as well as motor fibres. Ramifica-

Figure 3. Schematic representation of lumbar dorsal ramus and its 
branches; 1 — lumbar spinal nerve; 2 — ventral ramus, 3 — dor-
sal ramus; 4 — medial branch of dorsal ramus; 5 — lateral branch 
of dorsal ramus; 6 — muscular branch of medial branch of dorsal 
ramus; 7 — articular branches of medial branch of dorsal ramus; 
8 — cutaneous branches of medial branch of dorsal ramus.
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tion of DR presents also a regional significance; lateral 
branch innervates tissues lateral to LFJs whereas me-
dial provides innervations to the structures located 
medially to LFJs line [33] (Fig. 3).

Bogduk et al. [7] proposed that ramification of 
DR was triple, describing also a distinct intermediate 
branch in addition to medial and lateral. This thesis 
was later adopted from other authors as well. Mid-
dle or intermediate branch may co-exist with lateral 
branch in a short common trunk or separate directly 
from the DR. It is theorized that middle branch pro-
vides innervation to the longissimus lumbar muscle 
[19]. Furthermore, middle branch may also feature 
rich anastomoses with the other branches, there-
by composing complex neural plexuses. Despite the 
published data about the anatomy of intermediate 
branch, dichotomy of DR into medial and lateral 
branches represents the majorly acceptable standard 
in the literature [31].

After its emergence, medial branch traverses the 
superior border of the underlying transverse process, 
proximal to its origin [27]. It then passes between 
the bases of SAP and adjacent transverse process, 
traversing the dorsal portion of intertransverse lig-
ament. Medial branch is at this locus accompanied 
by the posterior branch of the lumbar artery, adher-
ing to the adjacent periosteum via connective tissue 
[19]. Farther on, it features a medial course passing 
under the MAL into the fibro-osseous canal. Medial 
branches of L1–L4 dorsal rami are encountered at the 
posterolateral portion of this canal, featuring greater 
proximity to AP than the MP [11]. They subsequently 
follow a medial and caudal route towards the verte-
bral lamina, demonstrating thereafter a deep course 
into the adipose tissue of multifidus muscle [19]. 
Medial branch is there ramified into three distinct 
branches; muscular, articular and cutaneous branch, 
supplying LFJs, multifidus muscles and supra- and 
inter-spinous ligaments (Fig. 3) [7, 19, 31].

The anatomic course and distribution of medial 
branch may feature considerable variability, thus com-
plicating the punctual description of LFJs innervation 
[19]. Bogduk et al. [7] stated in their paper that medial 
branch provides innervation to LFJs of respective level 
and one level caudally with descending branches. This 
statement was in general validated from the vast 
majority of subsequently published papers (Fig. 3) 
[11, 19, 29, 31]. There is, however, existing literature 
data supporting that LFJs innervation may be more 

complex, with emerging branches of sympathetic 
trunk and adjacent spinal ganglion participating as 
well [19, 25, 34, 35].

In their cadaveric study, Shuang et al. [31] con-
cluded that innervation of a particular LFJs is provided 
by medial branches of the two adjacent DR. Medial 
branches of lumbar DR demonstrate a terminal de-
scending portion, which may extent to 1–3 interver-
tebral levels. Medial branches of cranial DR tend to 
finally exhibit a shorter descending course in contrast 
to caudal. Furthermore, it was elucidated that articu-
lar branches from medial branch are also derived prior 
to entrance in fibro-osseous canal. These branches 
provide regional innervation to lateral and inferior 
portion of LFJs, whereas the terminally separated 
articular branches supply superior and medial aspects 
of LFJs [31].

L5 spinal segment features special anatomic char-
acteristics in terms of neural distribution. First, DR 
presents a longer course than ventral ramus, rising 
at the excavation between the superior surface of 
sacral ala and the base of S1 SAP [19, 26]. Perolat et 
al. [26] reviewed existing literature on FJ syndrome, 
quoting alongside data about LFJs anatomy. It was 
stated that L5 DR is bifurcated into a medial and 
an intermediate branch, with no presence of lateral 
branch [26]. However, this thesis is not universally 
accepted [31]. Medial branch of L5 DR subsequently 
runs caudally, giving rise to communicating branches 
to S1 DR [26].

CONCLUSIONS
Existing literature evidence indicates that LFJs 

represent complex structures in terms of anatomy, 
biomechanical sententiousness and functional impor-
tance. Despite the emerging interest on describing 
LFJs anatomy, a precise and universally accepted de-
scription of LFJs innervation remains absent. Future 
anatomic and radiologic studies with greater size of 
specimens may clarify this issue, contributing thus to 
better comprehension and optimisation of particular 
interventional procedures as LFJs denervation. 
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