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Background: Our group has shown early development of the hand lumbricalis 
and hypothesized that, at midterm, the lumbricalis (LU) bundles flexor tendons 
to provide a configuration of “one tendon per one finger” (Cho K.H. Folia Mor-
phol. 2012; 71, 3: 154–163). However, the study concentrated on the hand and 
contained no sections of near-term foetuses. 
Materials and methods: The present examination of paraffin-embedded tan-
gential sections along the planta from 25 embryos and foetuses at 6–40 weeks 
(15–320 mm crown-rump length) demonstrated that, at 8 weeks, the initial foot 
LU appeared in the proximal side of the common tendinous plate of all five deep 
tendons. 
Results: After midterm, a drastic three-phase change occurred at the muscle ori-
gin: 1) the LU originated from each of the flexor digitorum longus tendon (FDLT), 
but abundant tenocyte candidates separated the muscle fibre from the tendon 
collagen bundle; 2) the LU arose from the covering fascia depending on increased 
thickness of the muscle; and 3) the LU muscle fibres intermingled with tendon 
collagen bundles and partly surrounded the tendon. Simultaneously, a dividing 
site of the FDLT migrated distally to accelerate the changes at the LU origin. These 
phases did not always correspond to the size of foetus after 30 weeks. 
Conclusions: Consequently, in contrast to the hand LU, the delayed changes in 
the foot were characterised by involvement of the LU origin into a single common 
part of the FDLT. The quadratus plantae muscle fibres did not attach to the LU at 
any phase, and connected with the fourth and fifth toe tendons. (Folia Morphol 
2021; 80, 4: 904–915)
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INTRODUCTION
The lumbricalis (LU) in the foot seems to be consid-

ered a small muscle, the function of which is limited 
because minute control is unnecessary at the phalan-
geal joints of the toe and because the muscle often 
shows variations, including absence [17, 18]. Indeed, 
previous studies of finger tendons did not consider LU 
attachment [3, 8]. However, Cho et al. [6] paid special 
attention to early development of the hand LU and 
hypothesized that, at midterm, the LU rearranges the 
deep flexor tendons to provide a configuration of “one 
tendon per one finger”. This hypothetical contribution 
of the LU onto tendon splitting from the common 
tendinous plate seems to be consistent with the fact 
that, in adults, crisscrossing of the deep tendon fibres 
frequently occurs at the LU muscle origin [13]. Although 
Cho et al. [6] tried to compare between the hand and 
foot, their study contained few observations of the foot 
and no demonstration of the near-term morphology. 
Near-term foetuses were likely to carry morphologies 
that were the same as or similar to that in children.

Dylevsky [8] reported, in contrast to superficial flex-
ure tendons, that a single common tendon is transient-
ly built by the union of tendons from the flexor digi-
torum profundus and flexor pollicis longus in human 
foetus hands. His reported “united tendon” was most 
likely to correspond to a “common tendinous plate” 
described by Cho et al. [6]. The common tendinous 
plate is seen much later than the finger separation with 
apoptosis. People may consider that a splitting of the 
common plate occurs by mechanical stress from the 
muscle movements of each finger. Further, the finger 
movement is likely to accelerate the tendon splitting. 
Therefore, how and when the common tendinous plate 
disappears is an interesting viewpoint in the human 
foetal anatomy. However, independent movement of 
a single finger (e.g., such as that of a pianist) seems 
to be unnecessary for the foetus foot. Cho et al. [6] 
failed to find the plate in the foot at midterm, possibly 
because almost all of their observations were based 
on transverse sections. Rather than transverse sections, 
sectional planes tangential to the hand palm or foot 
planta aspect provide a much better understanding of 
the anatomy of the LU and flexor tendons. 

In contrast to the flexor digitorum profundus 
tendons in the hand palm, the flexor digitorum lon-
gus tendon (FDLT) is one tendon at the posterior 
half of the planta and divides into four tendons at 
the mid-planta near the metatarsal joints. Howev-
er, there seemed to be no information regarding 

the topographical relation of the LU origin with the 
dividing site of the FDLT. We do not know whether 
the LU plays a role in the re-arrangement of FDLT at 
or after division. Likewise, morphology near term 
is also interesting because toe movements in utero 
may accelerate tendon division. Consequently, using 
tangential sections, the aim of this study was to clarify 
the foetal morphology of the LU muscle origins with 
special reference to the topographical relation to the 
four growing deep tendons.

MATERIALS AND METHODS
The study was performed in accordance with the 

provisions of the Declaration of Helsinki 1995 (as 
revised in 2013). We examined the paraffin-em-
bedded histology of 28 embryos and foetuses at 
6–15 weeks of estimated gestational age (crown- 
-rump length [CRL] 15–118 mm): 7 embryos and early 
foetuses at 6–8 weeks (CRL 15–31 mm), 6 foetuses 
at 12–15 weeks (CRL 70–118 mm), and 15 foetuses 
at 31–40 weeks (CRL 260–320 mm). 

Five embryonic and three foetal specimens be-
longed to the Blechschmidt collection at the Medical 
Museum of Georg-August-Universität Göttingen. Al-
though the sectional plane was sagittal to the head 
and trunk, we found five specimens containing a tan-
gentially-cut foot. Most sections were stained with 
haematoxylin and eosin (HE), and a small amount 
were stained with azan or Masson trichrome. The use 
of this collection did not require specific approval of 
the Institute. The other 20 foetuses were a part of 
the large collection kept at the Department of Anato-
my and Embryology, School of Medicine, Universidad 
Complutense, Madrid; the foetuses were the result of 
miscarriages and ectopic pregnancies at the Depart-
ment of Obstetrics of the University. All sections were 
tangential along the plantar or palmar aspect and they 
were stained with HE. The use of the Spanish speci-
mens was approved by the Complutense University 
Ethics Committee (B08/374).

RESULTS
Observations of embryos and early and midterm 
foetuses

At 6 weeks, the lumbricalis did not yet appear (Fig. 1).  
Rather than along the superficial side, the flexor digi-
torum brevis tendon lied between the FDLT: thus, the 
superficial and deep tendons appeared to be inter-
calated (Fig. 1A–C). A single FDLT ran distally along 
a long course in almost two-thirds of the planta. In the 
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deep and distal side of the muscle belly of the flexor 
digitorum brevis, the FDLT joined the flexor halluces 
longus tendon to provide a common tendinous plate 

(Fig. 1D–F). The quadratus plantae inserted to the 
deep and posterior part of the common plate (Fig. 1G).  
At 7–8 weeks, however, the flexor digitorum brevis 

Figure 1. A–F. Early development of the flexor tendons in the foot planta. Crown-rump length 15 mm. Tangential sections along the planta. 
Haematoxylin and eosin staining. Panel A displays the most superficial plane near the skin, while panel I exhibits the deepest plane in the  
figure. In panels A–C, the flexor digitorum brevis tendon (FDBT) appears to interdigitate with the flexor digitorum longus tendon (FDLT). In 
panels D–F, the flexor halluces longus tendon (FHLT) joins the FDLT to provide a common tendinous plate (CTP). The quadratus plantae (QP) 
inserts to the posterior margin of the common plate (panel G). All panels were prepared at the same magnification (scale bar in panel A, 1 mm). 
Either the lumbricalis or interosseous is not yet developed; ABD — abductor digiti minimi; ADH — adductor hallucis; CA — calcaneus;  
CU — cuboid; FDB — flexor digitorum brevis; MT — metatarsal bone; PLT — peroneus longus tendon; TPT — tibialis posterior tendon.
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tendon was laid over and along the superficial aspect 
of the FDLT. The initial LU appeared between the FDLT 
(Fig. 2). Thus, it was located in the deep side of the 
superficial tendons. Notably, the common tendinous 
plate appeared not to attach to the initial lumbricalis, 
but it extended in a layer deeper than the LU (Fig. 2A, B).  
However, after enlargement of the common tendi-
nous plate, the lumbricalis proximal end appeared 
to attach to the plate (Fig. 2F, G). 

We failed to obtain complete tangential sections 
at midterm, but the sectional plane was much or less 

tilted (Fig. 3). Moreover, abortion manipulation might 
provide abundant red blood cells scattering in and be-
tween muscles. A common tendinous plate had already 
disappeared between the FDLT and flexor hallucis lon-
gus tendon. The foot lumbricalis did not originate from 
the common plate, but from the FDLT itself (Fig. 3D–F).

Observations of near-term foetuses

At the beginning of this study, we were confused 
regarding the variations in shape, location, and ori-
gin of the LU in near-term foetuses because multiple 

Figure 2. A–G. Early development of the foot lumbricalis; A–C. Crown-rump length (CRL) 30.5 mm; D–G. CRL 28 mm. Tangential sections 
along the planta. Haematoxylin and eosin staining. Panels A and D display the most superficial plane near the skin in each specimen. In panels A  
and F, the initial lumbricalis (LU) is lying between the flexor digitorum longus tendons (FDLT, numbers indicate the corresponding finger).  
In panels B, C, F and G, the flexor halluces longus tendon (FHLT) joins the FDLT to provide a common tendinous plate (CTP). The quadratus 
plantae (QP) inserts to the common plate (panels C, F). Panels A–C or D–G were prepared at the same magnification (scale bars in panels A 
and D, 1 mm); ABD — abductor digiti minimi; ABH — abductor hallucis; ADH — adductor hallucis; C — calcaneus; CT — calcaneus tendon; 
FDB — flexor digitorum brevis; MT — metatarsal bone.
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stages appeared to be mixed in a single section. After 
30 weeks, the LU morphology as well as the growth 
was different between specimens irrespective of the 
age or size. Below, we describe the most likely se-
quence of the morphological changes.

First, the LU muscle origin from the FDLT appeared 
to be established in the distal side of the dividing site 

of the tendon (Fig. 4A–F). The muscle fibre did not 
connect to the tendon collagen bundle; however, 
there was a narrow interface tissue containing abun-
dant cells presumed tenocytes (Fig. 5A–C). Second, 
the LU grew to provide a thick muscle belly at the 
posterior or proximal half and was covered by fascia 
(Fig. 6A–C). Because of the thick muscle belly, the LU 

Figure 3. A–F. Foot lumbricalis at midterm. Crown-rump length 118 mm. Tilted tangential sections along the planta. Haematoxylin and eosin 
staining. Panel A displays the most superficial plane near the skin in the figure. Panels D–F are higher-magnification views of squares in 
panels A–C, respectively. The lumbricalis (LU) originate from the flexor digitorum longus tendon (FDLT): the third toe tendon (panel E) and the 
third-fifth tendons (panel F). Abortion manipulation might result in abundant red blood cells that scatter in and between the muscles. Panels 
A–B (or D–F) were prepared at the same magnification (scale bar: 1 mm in panel A; 0.1 mm in panel F); CU — cuboid; MT — metatarsal 
bone; PLT — peroneus longus tendon.
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Figure 4. A–F. Foot lumbricalis origins from deep tendons near term. Crown-rump length 328 mm. Tangential sections along the planta.  
Haematoxylin and eosin staining. Panel A displays the most superficial plane near the skin in the figure. Panels E and F are higher magnification 
views of squares in panels A and B, respectively. Panel G, showing the interosseous muscle between the third and fourth toes, corresponds to 
a plane deeper than panel F. The lumbricalis (LU) is surrounded by the flexor digitorum longus tendons (FDLT), but due to a slightly wavy course 
of the tendons, the muscle origin appears to be irregularly intermingled with deep tendons (panels E, F). Higher magnification views of the  
lumbricalis origin from the deep tendon are shown in Figure 6. Panels A–D (or E and F) were prepared at the same magnification (scale bars:  
10 mm in panel A; 1 mm in panel E); CU — cuboid; MT — metatarsal bone; PLT — peroneus longus tendon; QP — quadratus plantae. 
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Figure 5. A–E. Histology of the lumbricalis origin: a difference from other muscle origins (higher magnification views of Fig. 4). The upper 
side of each panel corresponds to the distal side of the specimen. Panels A–C, corresponding to circles in Figure 4F, display foot lumbaricalis 
origins (LU). Panel D (corresponding to a circle in Fig. 4F) and panel E (a circle in Fig. 4G) exhibit the quadratus plantae insertion (QP) and the 
plantar interosseous origin, respectively. Along the flexor digitorum longus tendons (FDLT), muscle fibres of the foot lumbricalis attach to  
relatively loose connective tissue containing abundant tenocyte candidates (stars in panels A–C). Muscle fibres of the QP and interosseous 
are connected to a collagen fibre bundle of tendons (arrows in panels D, E). All panels were prepared at the same magnification (scale bar  
in panel D, 0.1 mm).
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Figure 6. A–F. Increased thickness of the lumbricalis and a start of the intermingling with deep tendons. Crown-rump length 295 mm.  
Tangential sections of a specimen without a direct origin of the lumbricalis (LU) from deep tendons. The proximal part of the LU is thick be-
tween superficial tendons 2s–4s in panel A. In deeper planes (panels B and C), the LU is surrounded by or intermingled with deep tendons 
2d–5d. Each of the LU muscles is surrounded by fascia (arrowheads in panels A and B). Panels D–F are higher-magnification views of circles 
in panels B and C. Because the flexor digitorum longus tendon (FDLT) is partly surrounded by the LU, in panels D and F, the LU muscle fibres 
are seen in the proximal side of the tendon. There is fibrous tissue (fascia; black stars in panels D, F) or a narrow space (open stars in panels 
D, E) between the FDLT and LU. Panels D–F were prepared at the same magnification (scale bar: 1 mm in panels A–C; 0.1 mm in panel F); 
FDB — flexor digitorum brevis; QP — quadratus plantae.
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Figure 7. A–I. Intermingling between the lumbricalis and tendon near and at the division of the flexor digitorum longus near term. Crown- 
-rump length 274 mm. Tangential sections deeper than the flexor digitorum brevis tendons. Haematoxylin and eosin staining. Panel A displays 
the most superficial plane near the skin in the figure. Panels E and F are higher magnification views of squares in panels A and B, respectively. 
Panels G–I are higher magnification views of three circles in panel F. The lumbricalis (LU) is surrounded by and intermingled with the flexor 
digitorum longus tendons (FDLT; panels E, F). A major part of the FDLT, encircled by a dotted line in panels B and C, continues to the FDLT in 
panel D: it is composed of the fourth and fifth deep tendons. Another part the tendons, largely from the second and third tendons, receives 
the quadratus plantae (QP; panels C, D). The QP is separated from the LU by fibrous tissue (panels E, F). Panel G exhibits a rare connection 
(arrowheads) between the LU and a deep tendon. Panels H and I show an interface tissue (stars) between the LU and tendon. Panels A–D, 
panels E and F or panels G–I were prepared at the same magnification, respectively (scale bar: 5 mm in panel A; 1 mm in panel E; 0.1 mm in 
panel G); ABH — abductor hallucis; ADH — adductor halluces; CU — cuboid; FHLT — flexor hallucis longus tendon; MT — metatarsal bone; 
PLT — peroneus longus tendon.
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extended superficially, as opposed to at the level of 
the deep tendons. Thus, in superficial sections, the LU 
appeared to be surrounded by the flexor digitorum 
brevis tendons rather than FDLT (Fig. 6A). Third, the 
proximal end of the LU became intermingled with 
collagen bundles of deep tendons at and near the 
dividing site of the FDLT, and they together provided 
a musculotendinous complex (Figs. 6C; 7). The prox-
imal parts of the LU were divided by tendons into 
several clusters. Thus, some of the muscle clusters 
were located in the “proximal or posterior” side of 
the tendon. Therein, in contrast to the initial origin 
from the tendon, the LU distal end controversially 
appeared to “insert” into the FDLT (Fig. 6D–F). The 
intermingling and dividing process made parts of 
the LU surround deep tendons. Conversely, we rare-
ly found a close relation between the muscle fibre 
and tendon (Fig. 7G); it was also rare to find a loose 
interface tissue between the LU and the tendon (Fig. 
7H, I). In accordance with those changes, the dividing 
site of the FDLT appeared to migrate distally when 
compared with the peroneus longus tendon that 
transversed the foot medially in the deep side of the 
FDLT (Fig. 4B vs. Fig. 7B). 

In the deep side of the LU, the interosseous con-
tained a thin intramuscular tendon to provide a bi-
pennatus appearance (Figs 4G; 7C). The quadratus 
plantae did not attach to the LU (Figs. 6C; 7C). In con-
trast to the LU origin from deep tendons, the nearby 
muscle origin or insertion was composed of a direct 
connection between a collagen fibre bundle and 
a muscle fibre (Fig. 5D, E). At the dividing site of the 
FDLT, the laterally-located elements (the fourth and 
fifth tendons) received the quadratus plantae, while 
the medially-located elements (the second and third 
tendons) tended to continue posteriorly to a single 
tendon of the flexor digitorum longus (Fig. 7A–D). 

DISCUSSION AND CONCLUSIONS
The most striking observation in this study seemed 

to be the great variation in LU morphologies in near-
term foetuses. In contrast to a rather stable morphology 
in early and midterm foetuses, at and near the muscle 
origin near term, we found four evidences: phase 1) 
the LU origin was interposed by abundant cells pre-
sumed tenocytes; phase 2) the growing LU expanding 
the origin to the covering fascia; phase 3) the mus-
cle proximal end intermingling with deep tendons to 
provide a musculotendinous complex; and phase 4)  
several proximal muscle clusters divided by ten-

dons. These morphologies were not simple variations, 
but were most likely sequential changes or growth (ear-
ly-, mid- and late-phases in Fig. 8). Except for phase 1,  
the other phases were not described in the hand, possi-
bly because of no observations of near-term specimens 
[6]. Although a morphometric analysis was not per-
formed, a distal migration of the dividing site of the FDLT 
was likely and it seemed to accelerate the intermingling  
(phase 3) and dividing (phase 4) of the proximal part of 

Figure 8. A–C. A hypothetical change in the lumbricalis origin from 
deep flexor tendons. The flexor digitorum longus tendon (FDLT) is 
numbered as ②, ③, ④, and ⑤. In the early phase (panel A), 
the lumbricalis (LU) originates from each division of the FDLT. In 
the mid-phase (panel B), the LU appears to arise from the covering 
fascia depending on increased thickness of the muscle. In the late 
phase (panel C), the LU muscle fibres intermingle with and partly 
surround the tendon. As these changes advance, a dividing site 
of the FDLT migrates distally to accelerate the involvement of the 
lumbricalis into tendons. The LU is not drawn between the fourth 
and fifth toes.
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the LU. The distal migration of the tendon dividing  
site might be an analogy of the recession of flexor 
muscle bellies onto the foream, although the direc-
tion was reversed between the hand and foot [14]. 
A mixture of the LU and tendon might be limited be-
tween the first and second toes, resulting in a higher 
incidence (around 10%) of second LU absence in the 
foot [17, 18].

Cho et al. [6] considered that, based on obser-
vations of cross sections from midterm foetuses, 
the common tendinous plate is absent between the 
FDLT and flexor hallucis tendon. Actually, present 
observations also ensure the absence at midterm. 
However, their tangential sections were very limited 
in number. The present tangential sections demon-
strated the foot common plate in embryos and early 
foetuses. Therefore, the union of all five tendons 
was a process common between the hand and foot. 
After (and independent of) programmed cell death 
for sculpturing the fingers/toes, the common plate 
seemed to appear to unite flexure tendons. A tendon 
to the thumb or first toe is separated from the others 
until midterm. However, in contrast to the hand, strict 
correspondence between the LU and deep tendon 
became lost in the near-term foot. Perhaps, the hand 
of near-term foetuses might also carry a morphology 
or variation similar to the foot LU. As shown in the 
quadratus plantae and interosseous, to maintain the 
initial muscle morphology throughout prenatal life, 
a definite connection seemed to be necessary be-
tween the muscle fibre and a tendon collagen bundle 
without an interface tissue. Leijnse [13] considered 
that, in the hand, tendon splitting occurs due to 
finger movements in utero. Limited, independent 
movement of the toes might make a difference in 
the LU between the hand and foot, although we do 
not have ultrasound information of living foetuses.

In the extremities, a muscle belly develops in ac-
cordance with its tendon at the same time [4, 7, 15, 
20]. Foetal development of the muscle-tendon inter-
face has been one of the leading topics in anatomical 
research [1, 2, 22]. In contrast to the concept of the 
definite connection between the muscle and tendon, 
our group has demonstrated a delayed morphological 
change at the origin or insertion of human foetus 
striated muscles at multiple sites [5, 9, 11, 12, 16, 
21]. Because an anchoring of striated muscle fibre to 
a collagen bundle requires a large molecular complex 
including dystrophin, desmin, nitric oxide synthase, 
and other proteins, a destruction and rebuilding of 

the complex seemed to be unlikely in foetal develop-
ment, especially in the very late stage between 30 and 
40 weeks [10, 19]. Therefore, the aforementioned 
delayed change in the origin and insertion seemed 
to occur in the “collagen side” of the enthesis, i.e., 
the muscle fibre attachment moves from a collagen 
bundle of the tendon, via that of the fascia to the 
musculotendinous complex at the division of the FDLP.
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