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The growth hormone and appetite are regulated by a 28-peptide hormone called 
ghrelin, which is produced in the stomach, pituitary gland, and other body tissues. 
The physiological roles fulfilled by ghrelin include regulation of food intake, cardiac 
output, reproductive system, proliferation of cells, and formation of osteoblasts, 
as well as action against inflammation/fibrosis. The ghrelin present in the body 
can be distinguished as acylated ghrelin and deacylated ghrelin. Furthermore, both 
in humans and other animals, the entirety of the gastrointestinal tract comprises 
ghrelin cells, which are classified as open-type and closed-type cells. The present 
study reviews the evidence about how ghrelin cells are distributed in the human 
and the animal body. (Folia Morphol 2021; 80, 2: 225–236)
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OVERVIEW
The discovery of ghrelin as an endogenous ligand 

for the growth hormone secretagogue receptor (GHS-R) 
in the stomach was made in 1999. Since then, ghrelin 
has been found to be involved in growth hormone 
(GH) secretion, dietary intake, glucose metabolism, 
memory, and effects against depression [50, 79, 86].

Ghrelin is mainly produced in the upper part of the 
stomach, which is called the fundus. Ghrelin remains 
available in a proportion of 35–45% following a com-
plete gastrectomy [4, 30, 73]. Its action on the body 
is related to its close association with the GH secre-
tagogue subtype 1a (GHS-R1a), a G protein-coupled 
receptor [13]. A large number of tissues and organs, 
including the peripheral and central nervous systems, 
have high expression of both ghrelin and GHS-R1a. 
Thus, additional organs support ghrelin production, 
even though the stomach is the primary producer. 
Among the organs that have been found to have 

ghrelin gene expression in both humans and rodents 
at various developmental stages are the intestine [32], 
brain [89], heart [57], lung [21], testis [27], immune 
cells [17], and pancreas [105].

Research has uncovered that ghrelin and GHS-R1a 
fulfil key bioactions in a wide range of physiological 
processes, including regulation and homeostasis of 
central food intake [66], modulation of the cardio-
vascular system [111], gastric acid production and 
circulation improvement [56], as well as regulation 
of cell proliferation and survival [74].

Ghrelin cells have maximum prevalence in the gas-
tric body mucosa, but this prevalence decreases in the 
gastric antrum and in the small intestine, especially in 
rodents. In adult bodies, ghrelin is produced chiefly by 
the stomach, so other sources have not been closely 
investigated. For instance, studies on rodents have 
not considered other sources of ghrelin production, 
choosing to focus on the stomach fundus. However, it 
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has been reported that 20% of circulating ghrelin was 
still available in rodents following fundectomy [105].

GHRELIN HISTORY AND 
CHARACTERISTICS

The discovery of peptide derivatives mediating GH 
secretion from the anterior pituitary was made by Cyr-
il Bowers and Frank Momany towards the end of the 
1970s [8, 62]. The formation of the discovered growth 
hormone-released peptides (GHRPs) was found to 
be based on chemical alteration of met-enkephalin, 
including GHRP-6 and GHRP-2 [85]. In a 1996 study, 
GHS and GHRP were used as agonists by Roy Smith 
and Lex van der Ploeg to assess the GHS candidate 
MK0677 for the GHS-R1a clone [44]. This sparked 
methodical investigations with the purpose of catego-
rising the endogenous GHS-R1 ligand. It was only with  
the discovery of the GHS-R1 cognate agonist in 1999 
that the ligand became effective. The name “ghrelin” 
was given to the hormone consisting of 28 peptides 
that was isolated from rodent gastric extracts [49]. In 
2000, it was found that ghrelin was responsible for 
regulation of weight and intake of fat and glucose 
by acting on the cerebral tissue [97].

Derived from the root “ghre” of proto-Indo-Euro-
pean origin, the term “ghrelin” reflects its function 
as a GH peptide. Interestingly, “ghre” and “lin” are 
widely accepted in hormone terminology [9, 65].

THE PROCESS OF GHRELIN 
DEVELOPMENT

To reach full development, ghrelin goes through  
a number of post-transitional modifications. It under-
goes translation as preproghrelin, a precursor protein 
with 117 amino acids. This is followed by cleavage of 
the N-terminal signal co-translation to generate 94 
amino acids and transfer to the endoplasmic reticu-
lum lumen proghrelin comprising 23 amino acids and 
66AA carboxyterminal peptide known as C-ghrelin 
(Fig. 1). By binding to fatty acyl group (o-ctanoyl), 
proghrelin undergoes octanoylation to serine residue 
(Ser3), which is the third amino acid related to the 
enzyme known as ghrelin O-acyltransferase (GOAT). 
A ghrelin acylation enzyme, GOAT, serves to highlight 
how important acyl modelling is for ghrelin physiol-
ogy. Switch is of particular significance in octanoy-
lation and, to a lesser extent, to the ghrelin effect 
on systemic metabolism. Clear evidence regarding 
the central function of GOAT in activating ghrelin 
has been brought forth [37, 109]. The formation of 

mature ghrelin results from packaging proghrelin into 
secretory vesicles and alteration by protein convertase 
enzymes. Consisting of 28 amino acids, mature ghre-
lin is released into the circulation [34]. Conversely, if 
proghrelin is cleaved at the C-terminal (C-ghrelin), it 
can yield obestatin with 23 amino acids and opposite 
role to ghrelin [71].

The stomach-derived human ghrelin gene is pres-
ent on the third chromosome (3p25-26) and consists 
of five exons and four introns. It secretes various 
bioactive molecules, including two types of ghrelin, 
namely, acylated ghrelin (AG) and deacylated ghrelin 
(DAG), as illustrated in Figure 1 [56]. In mammalian 
bodies, the stomach is the producer of AG [7].

In the human body, AG, DAG, and C-ghrelin are 
the forms of ghrelin found in the bloodstream [42, 
70, 71]. GOAT undertakes acylation of the AG peptide, 
with expression restricted chiefly to the gut, stom-
ach, and pancreas. Hydrolysis causes the loss of the 
N-acyl group from DAG [37]. Meanwhile, C-ghrelin 
comprises the entire obestatin coding area and may 
undergo cleavage for secretion of peptides, including 
obestatin [71].

In general, AG in the bloodstream is less than 
10%, while DAG and C-ghrelin in the human blood-
stream account for over 90% of the total ghrelin in 
the bloodstream [81]. 

When the gastric mucosa is surgically extracted, 
there is a reduction of around 80% in the synthesis of 
C-ghrelin in rats [20, 53] and in humans [4]. Under-
standing is yet to be achieved as to whether the same 
or similar secretory pathways release ghrelin and DAG 
into the circulation. In rats, gastric ghrelin is broken 
down via deacylation and N-terminal proteolysis [22], 
with deacylation being undertaken by lysophospholi-
pase I [84]. In rats, receptor activity is not exhibited by 
DAG against GHS-R1a, GH release or other endocrine 
events. Another compound demonstrating bioaction is 
unesterified GHRL, the activity of which is underpinned 
by a GHS-R other than GHS-R1a [7, 82].

MORPHOLOGICAL CHARACTERISATION 
OF GHRELIN CELLS IN THE 
GASTROINTESTINAL TRACT

In earlier studies, gastric ghrelin was characterised 
as deriving from an ultra-structured, “hormonal-less” 
A-like cell present in rat pancreas and human P/D1 cells. 
In the rodent gastrointestinal tract (GIT), oxyntic muco-
sa has the greatest prevalence of ghrelin cells, followed 
by the gastric antrum and small intestine [18, 19, 75].  
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In adult individuals, ghrelin is primarily produced by 
the stomach, so the other hormone sources have 
been studied to a lesser extent. The stomach fundus 
has been particularly extensively explored in studies 
on rodents. The ghrelin in the rodent bloodstream 
post-fundectomy has been reported to be at a level 
of 20% [19], reflecting the fact that there are other 
sources of the hormone besides the stomach, such 
as the pancreas and intestines [105]. The presence of 
ghrelin-containing X cells in rodent stomach has been 
indicated through immunohistochemistry, immunoe-
lectron-based microscopy, and hybridisation [75, 78].

In rodents, ghrelin cells have been found through-
out the GIT apart from the myenteric plexus, with the 
stomach body and upper part displaying the greatest 

production of ghrelin cells. Meanwhile, in the large 
and small intestines, ghrelin cells are found in the 
epithelium of crypts and villi, but these cells are less 
dense in the large intestine [41, 45].

Most ghrelin entero-endocrine cells are classified 
as closed-type cells because they are not continuous 
to the gastrointestinal lumen. By contrast, ghrelin 
cells continuous to the gastrointestinal lumen are 
classified as open-type cells and are most prevalent 
in the stomach [94].

In terms of histology, there are clear differences 
between the ghrelin cells in the stomach and those 
in the intestinal tract. The stomach contains spherical 
cells of small size known as closed-type cells [19, 77, 
112], while the small intestine and colon contain both 

Figure 1. Schematic representation of the process of ghrelin maturation, starting with the structure of the human ghrelin gene to its active peptide.
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closed-type cells with a pyramidal or expanded shape 
and open-type lumen cells that have more than one 
cytoplasmic process and are located in the apical cell 
membrane (Fig. 2).

The regulation of the open-type cells is mechan-
ical, based on luminous signals (e.g. pH, nutrients), 
while the regulation of the closed-type cells is based 
either on mechanical effect or the effect of additional 
hormones released into the circulation from the GIT 
(e.g. leptin, somatostatin, glucagon) [38, 100]. One 
study on rainbow trout discovered that the distribu-
tion of ghrelin cells in the stomach mucosa encom-
passed both closed-type and open-type cells [76]. 
Furthermore, research employing electron microscopy 
has revealed that spherical and dense granules of gas-
tric mucosal cells exhibited the ghrelin immunogold 
mark [75, 95, 110]. Ghrelin cells have somewhat small 
and round secretory granules, with varying electron 
density in their cores, from solid to rather electron-lu-
cent. Consequently, the limiting membrane adheres 
closely to the dense core in the majority of granules. 

In the foetus, there is no difficulty differentiating 
ghrelin cells from β cells based on the thick uneven 
structure of their granules [105]. Meanwhile, on  
a study on rodents, hamsters were shown to have sig-
nificantly smaller ghrelin granule diameters (200.8 ±  
± 8.8 nm) compared to mice (277.7 ± 11.1 nm) and rats  
(268.8 ± 13.0 nm) [55]. There were no major differenc-
es in ghrelin-immunoreactive cells between mice and 
humans (147 ± 30 nm); however, by comparison to 
rats and humans, dogs displayed considerably larger 
ghrelin cell granules (183 ± 37 nm vs. 273 ± 49 nm).  
Ultrastructure studies have characterised ghrelin cells 
as well-defined spherical, compact-to-thin, haloed 
secretory cells around 140 nm in width, located in 
the core of the oxyntic gland, and presenting X/A-like 
granules. In the stomach, ghrelin cells can be found in 
the proximity of cells that secrete histamine. In dogs, 
ghrelin cells are typically spherical and associated 
with a range of sizable, solid, electron-dense X-like 
granules of oval shape with significant marking for 
ghrelin antibodies [26].

Table 1. The distribution of ghrelin cells in humans and other animals, listed alphabetically

Site of ghrelin cells Morphology of the ghrelin cells References

Amphibians and reptiles Stomach (mucosal layer) not in myenteric plexuses and muscle layer Closed cell type [1, 11]

Canine Stomach Closed and open types [75]

Chicken First part of the stomach (middle layer of mucosal layer) Closed cell type [98]

Dog Stomach Closed and open types [75]

Human Stomach (all parts of the fundic gland) Open and closed cell types [26]

Mice Gastric fundus Closed and open types [102]

Pigs From stomach to cecum Closed and open types [100]

Rainbow trout Stomach (mucosal layer) Closed and open types [79]

Rats Stomach (from base to body of fundic gland) Closed type only or both types  [79, 80]

Figure 2. Schematic illustration of the two types of ghrelin cells; A. Closed-type ghrelin cells delineated in green colour; on the superior part, 
the cells are sealed by epithelial cells so there is no direct interaction with the lumen; when neurons are stimulated, ghrelin is released, as 
indicated by the grey colour, and the cell basal area gives rise to nutrient receptors, as indicated by the blue colour; B. Open-type ghrelin cells 
delineated in green colour; these cells communicate directly with the lumen on their superior part, while the inferior part gives rise to nutrient 
receptors, shown in blue colour. The small orange dots in both types of cells indicate the spread of ghrelin to lamina propria, from which it 
permeates the gastric capillaries and finally the systemic circulation.

A B
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Positive ghrelin cells are likely to be assimilated 
in the plasma instead of the intestinal tract because 
they are found close to capillaries and do not have 
contact with the oxyntic gland lumen [9]. Table 1 
provides an overview of the GIT location of cells that 
secrete ghrelin.

GHRELIN CELL DISTRIBUTION IN 
HUMANS AND ANIMALS

Distribution of ghrelin cells in the human GIT
Gastrectomy is an intervention performed in cases 

of cancer or perforated ulcer, involving removal of 
the stomach, either partially or entirely. One study 
concluded that the stomach was the main source of 
ghrelin in the bloodstream since patients who had 
undergone complete gastrectomy exhibited a 65% 
reduction in plasma-like immune rates [4]. Similarly, 
a different study reported that the levels of immu-
noreactive ghrelin in plasma were almost halved in 
the aftermath of complete gastrectomy compared to 
pre-gastrectomy; however, there was a subsequent 
progressive rise in the plasma ghrelin levels, suggest-
ing that other sources of ghrelin offset the ghrelin 
lost through stomach removal [87].

A sex-based difference in the distribution of ghre-
lin cells and levels of ghrelin in plasma has been dis-
covered, with the plasma ghrelin levels being higher 
in females than in males [58].

It has also been proposed that, in humans, the 
levels of ghrelin in the bloodstream were regulated 
by sex hormones, since testosterone therapy was 
observed to enhance ghrelin levels in hypogonadal 
patients [52]. The regulatory effect of sex hormones 
was reinforced by the observation that there was  
a higher number of ghrelin cells with expression of the 
oestrogen α-receptor 3 days post-ovariectomy [36].

Anti-ghrelin antibody was employed by Tanaka- 
-Shintani and Watanabe [93] to analyse how im-
munoreactive ghrelin cells were distributed in the 
gastric mucosa in humans, with results revealing 
that those cells were mainly located in the stomach 
fundus and there was a close correlation between 
their distribution and the distribution of parietal cells. 
The overall cell number for rich and mild types was  
3.70 ± 3.31 and 1.18 ± 2.67, respectively, for every 
area of the fundus. The area of the duodenum also 
contained immunoreactive ghrelin cells, although 
not in such a great abundance as the stomach [108].

Other studies reported that the intestine had the 
greatest concentration of immunoreactive ghrelin 

cells, with lower concentrations in the duodenum, 
jejunum, and ileum, and absence in the colon. The 
majority of the ghrelin cells were present in the Lieb-
erkühn crypts [61, 94].

Obese females have been observed to have  
a greater abundance of ghrelin cells than obese males 
(p > 0.05). The stomach body had the greatest con-
centration of ghrelin cells, followed by the fundus and 
antrum. By contrast, patients with H. pylori infection 
or gastritis were found to have a lower abundance 
of ghrelin cells [114].

A study that investigated how the levels of ghrelin 
in serum, the number of ghrelin cells, and weight 
were correlated in patients with Prader-Willi syndrome 
reported that the stomach fundus contained a num-
ber of ghrelin cells that was 2–3 times higher, while 
the levels of ghrelin in plasma were also abnormally 
high, even in younger patients [93].

In the context of embryonic development, ghre-
lin cells appear in the foetal stomach from day 18, 
proliferating in direct proportion with foetal growth. 
During the first week of embryonic development, pos-
itive-immunostained ghrelin cells emerged at the base 
of the gland, while in the third week, they emerged 
at the base and neck, achieving distribution from the 
base to the neck of the fundic gland during post-ne-
onatal development [80]. In a different study, the 
number of immunoreactive ghrelin cells was low at 
day 21 of embryonic development, but grew progres-
sively afterwards and then declined [43]. Furthermore, 
it has been suggested that the increase in the levels 
of gastric ghrelin mRNA by age was correlated with 
the rise in the number of ghrelin cells [69].

In humans, another organ associated with the 
presence of immunoreactive ghrelin cells is the pan-
creas. The cells secreting α glucagon and β insulin 
and the δ cells in pancreatic islets have endogenous 
expression of ghrelin, whilst the pancreatic α and  
β cells have preponderant expression of GSH-R1a 
[60, 99]. Furthermore, it has been discovered that, by 
comparison to the adult pancreas, the foetal and neo-
natal pancreas has a higher number of ghrelin cells.

Evidence has been produced regarding the con-
sistent lack of hormone related to immunoreactive 
ghrelin cells in the common islet-type of cells, namely, 
α, β, δ, and pancreatic polypeptide cells (PP-cells) 
based on double or triple immunostaining for ghrelin 
and four major islet hormones (i.e. glucagon, insulin, 
somatostatin, and PP-cells) [40]. Ghrelin cells have 
also been found in foetal and neonatal rat pancreas 
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[25, 101] and in mouse pancreas [16]. Furthermore, 
from day 8 of mouse embryonic development, ghrelin 
cells start to participate in the formation of Langer-
hans islets. The pancreas secretes ghrelin on a con-
stant basis during embryonic development, but the 
release rate decreases rapidly after birth. In humans, 
only a particular group of cells has ghrelin expression 
in islets; by contrast, in mice, a subset of ε-cells is 
chiefly responsible for the glucagon-based production 
of ghrelin in islets.

The insulin produced by the pancreatic β cells 
undertakes modulation of glucose homeostasis. The 
involvement of ghrelin in glucose homeostasis has 
been highlighted by a number of studies and it is 
presumed that, in humans, ghrelin has an effect on 
how this process is modulated [18].

Ghrelin and GHS-R1a may have a stimulating effect 
on the functions of the pancreas, as the receptor has 
been found to be present in islands. Furthermore, there 
is evidence that ghrelin and insulin have a reciprocal 
effect on the modulation of their production [18].

Distribution of ghrelin cells in rat GIT

In one study, anti-acylated rat ghrelin antiserum 
was employed to histologically characterise rat gh-
relin cells and determine how they were distributed. 
It was observed that the distribution of ghrelin cells 
spanned the whole rat gastrointestinal mucosa, from 
the stomach to the colon. Moreover, both closed-type 
and open-type of cells were distinguished, as well as 
both types of ghrelin, with DAG being present mainly 
in the perinucleus region and AG occurring at the 
edges of the cytoplasm [77].

Morphometric analysis revealed that the greatest 
concentration of ghrelin cells was in the rat stomach, 
followed by the duodenum, with reduced concentra-
tion in the large and small intestines [68]. Sex-based 
differences ghrelin cell presence in rats have also 
been reported, with female rats displaying a higher 
number of ghrelin cells and from an earlier develop-
mental stage [59].

In Teive et al. [94], Wistar rats were employed to 
determine whether it was possible to offset the ghrelin 
lost due to gastrectomy by increasing the presence 
of ghrelin cells in the duodenum. To that end, the 
rats were subjected to sleeve gastrectomy followed 
by reoperation 30–60 days later. The latter, involved 
dissection of a duodenal segment for the purposes of 
immunohistochemistry to determine the number of 
ghrelin cells. Results indicated a proliferation of immu-

nopositive ghrelin cells in the duodenum, which was 
considered to be unrelated to the sleeve gastrectomy.

In Sun et al. [90], a gradual rise in the levels of 
mRNA gastric ghrelin was observed during the second 
and third weeks post-partum. Similarly, in Sun et al. 
[92], the levels of gastric ghrelin increased constantly 
up to 3 months post-partum. Another study reported 
that the gastric and intestinal tract contained both 
open- and closed-type of ghrelin cells, with the stom-
ach having the greatest concentration of ghrelin cells, 
while the number of open-type cells increased steadily 
from the stomach to the lower intestine. In addition, 
rats of both sexes exhibited positive ghrelin cells in 
the stomach immediately post-partum, with a steady 
rise in the level of expression of gastric ghrelin up to 
two months of age after birth [68].

In Wortley et al. [106], the use of immunohisto-
chemistry and immunoelectron microscopy to in-
vestigate ghrelin cell distribution in the stomach of 
Wistar rats revealed that immunoreactive positive 
ghrelin cells spanned the area from the fundic gland 
neck region to the actual fundus glands. Further-
more, the granules of enteroendocrine type X cells 
were discovered via ultrastructural analysis to have 
positive-immunolabelled ghrelin cells.

Immunohistochemistry was also the approach 
adopted in McFarlane et al. [59] to identify ghre-
lin-positive mast cells and establish where they were 
found and how they were distributed. Results showed 
that ghrelin was produced by the mast cell granules, 
which were smaller than tryptase-positive mast cells. 
Thus, it was confirmed that mast cell granules present 
in rodent stomach wall contained ghrelin, implying 
that mast cells were an important ghrelin source.

Distribution of ghrelin cells in mouse GIT

The preferred animal model for developmental 
studies on gene modulation is the mouse. From the 
fact that appetite is stimulated by ghrelin in both 
rodents and humans, it has been deduced that the 
hormone represents an orexigenic antipode to ano-
rexigenic leptin, anticipating that appetite suppres-
sion and weight loss could be achieved through phar-
macologic ghrelin activation [91, 102]. However, this 
theory has not been supported by investigations of 
ghrelin on mouse models, which did not exhibit sig-
nificant appetite suppression or weight loss [55, 109, 
113, 115]. On the other hand, it has been observed 
that mice with ghrelin deficiency do not have an ab-
normal body weight or dietary intake, and actually, 
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it appears that, in mice, ghrelin serves primarily to 
regulate glucose in the blood. Several studies have 
reported that tolerance to glucose is enhanced by 
ghrelin ablation by stimulating elevated production 
of insulin [48, 107]. Similar to mice with ghrelin de-
ficiency, mice with GHS-R deficiency do not gain 
weight when given a diet rich in fat. Some studies 
have argued that, to some extent, this might be due 
to the fact that such mice have a moderate pituitary 
and use fat selectively for energy purposes [39, 47]. In 
Churm et al. [12], it was found that mice with ghrelin 
deficiency and of different origins displayed reduced 
body weight and fat mass, which was tentatively 
attributed to intensified energy use and movement. 
Furthermore, studies on mouse models with ghrelin 
knockout concluded that dietary intake or develop-
ment did not depend critically on the ghrelin peptide 
[113], and mice with ghrelin knockout did not eat less 
or were of smaller size, but they did differ from wild 
counterparts in terms of their behavioural phenotype 
related to dietary intake [102, 113].

Ghrelin cell distribution in non-mammalian 
vertebrates

A number of vertebrates have been identified to 
have ghrelin cells [29, 54], with evolutionary highly 
conserved ghrelin N-terminal areas. One study has 
been successful in isolating ghrelin from trout, re-
vealing that octanoic or decanoic acid modified the 
third residue of ghrelin serine [23]. A different study 
has detected immunopositive ghrelin cells through-
out the GIT, but with a gradual reduction in number 
from the stomach to the duodenum, ileum, cecum, 
and colon [114].

In Wortley et al. [106], hamsters were used to 
show that the ghrelin cells were the same as the  
X cells of proper gastric glands and those cells were 
fewer than in rats and mice. Meanwhile, in Steinert 
et al. [88], similarities were reported between ghrelin 
cells in mammals or birds and ghrelin cells in amphib-
ians and reptiles; ghrelin cells were present on the 
stomach mucosal layer but absent on the mesenteric 
nerve plexus or stomach muscularis externa.

In birds, immunopositive ghrelin cells have been 
detected in the proventriculus mucous layer, which 
is the first area of the stomach fundic gland, where 
digestion enzymes act on the food intake alongside 
the gizzard. On the other hand, immunoreactive gh-
relin cells have been found to be absent from the 
avian mesenteric plexus; compared to the mucosal 

layer, a higher number of immunopositive cells has 
been identified in the middle layer and the majority 
of ghrelin cells were closed-type cells [72].

In Tschop et al. [96], the nutraceutical properties 
of a diet of Spirulina (Arthrospira platensis) were 
investigated by analysing the expression of oligopep-
tide transporter 1 (PepT1) and ghrelin in the GIT of 
zebrafish (Danio rerio). After 2 days of fasting, ghrelin 
began to be secreted and its levels increased after  
5 days, initially in the stomach and then in the rest of 
the GIT. It was thus concluded that, in the context of 
fasting and feeding, the effect of ghrelin on zebrafish 
was opposite that of PepT1 [96].

THE ROLE OF GHRELIN AND  
RELATED RECEPTOR

A number of physiological processes unfold with 
the involvement of ghrelin. An overview of the key 
roles performed by ghrelin is provided in Figure 3.

Belonging to the superfamily of G-protein coupled 
receptors, the ghrelin receptor, GHS-R, has seven 
transmission domains across the helix. In humans, 
the GHS-R gene is made up of two exons and one 
intron and is located on chromosome 3 (3q26.2) [13]. 
GHS-R is differentiated into GHS-R1A, which is a 366 
AA protein with seven transmembrane helix domains, 
and GHS-R1B, which is a 289 AA protein with five 
transmembrane helix domain [15].

In mammals, among the behaviours of great-
est complexity is food intake, which is controlled 
by different homeostatic and external factors.  
A key hormone for food intake regulation is ghrelin  
[2, 10]. In rodents, ghrelin circulation intensifies dur-
ing feeding before reverting to normal levels once full-
ness is achieved [2, 5]. Weight gain often accompanies 
chronic therapies owing to increase in adiposity [24]. 
In humans, food intake has been observed to increase 
when peripheral ghrelin was administered. There is 
also a regular increase and reduction in the levels of 
ghrelin in the human bloodstream, corresponding to 
the daily intervals of food consumptions [83].

Research using mouse models has reported 
that angiogenesis was consistently promoted when 
ghrelin was administered. According to a recently 
conducted study on rat model of cardiopulmonary 
bypass, cardiopulmonary bypass-related inflamma-
tory response, apoptosis, and oxidative stress were 
reduced when ghrelin was administered, while the 
heart pumping function was maintained based on 
signalling GHS-R1a and Akt [14].
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Studies on rats have also found that ghrelin and 
its receptor were associated with osteoblast develop-
ment, with ghrelin being reported to help osteoblasts 
proliferate and differentiate both in vitro and in vivo 
[56]. The regulatory effect of ghrelin on bone develop-
ment seems to be underpinned by ghrelin induction 
of the phosphorylation of adenosine monophosphate 
active protein kinase [46]. Despite promoting the 
growth of human osteoblasts, which show exclusive 
expression of GHS-R1b isoform inactive receptor, it 
appears that ghrelin has no effect on the differentia-
tion of osteoclasts in rats [63]. Such results reflect the 
fact that the influence of ghrelin on bone turnover 
is not dependent on GHS-R1a. Furthermore, in more 
recent studies, ghrelin has been observed to regulate 
osteoclastogenesis and bone metabolism in an age-
based manner by interacting with leptin [6, 33].

Mouse models of Parkinson’s disease and focal 
ischaemia/reperfusion have indicated that ghrelin-reg-
ulated GHS-R1a signals demonstrated protective ef-
fects. The neurological disorder of Parkinson’s disease 
manifests clinically as recurrent tremor, rigidity, and 
bradykinesia. A recent study on C57BL/6 mice found 
that GHS-R1a signalling dopaminergic neurons for trig-
gering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) neurotoxicity were controlled by ghrelin [31].

Ghrelin signals with GHS-R1a mediation could po-
tentially participate in adult hippocampal neurogen-
esis as progenitor cells have been found to contain 
hippocampal GHS-R1a. The results of a recent study 
on adult mice pointed to the fact that hippocampal 
neuronal progenitor cells activated and differentiated 
in the sub-granular zone [64]. One study even proposed 
that GHS-R1a signalling could be the basis for a strategy 
for improving dysfunctional learning and memory, since 
it contributes significantly to the proliferation of adult 
hippocampal progenitor cells and the early differentia-
tion of neurons, which in turn underpin the generation 
of agonists in ghrelin receptors [13].

Ghrelin and its receptor have been detected in 
both rat and human testes [35, 103, 104], as well as in 
the organs involved in the human female reproductive 
system, namely, the ovary, hilum, and corporal lutea 
[28]. Furthermore, by diminishing the differentiation 
of hypothalamic gonadotropin release hormone and 
increasing hormone luteinisation and production of 
follicle-stimulating hormones, ghrelin contributes 
significantly to the regulation of the hypothalamic- 
-pituitary-gonadal axis [3].

Another key function attributed to ghrelin is the 
control of lipid storage by white adipose tissue. GH 
production is frequently stimulated by extensive ex-

Figure 3. The key roles fulfilled by ghrelin in physiological processes; GH — growth hormone.
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posure to ghrelin, leading to an expansion in the 
fat mass. Ghrelin has additionally been observed to 
improve adipogenesis, enzyme action for fat storage, 
and the levels of triglycerides, whilst decreasing fat 
usage and lipolysis [10].

Soon after ghrelin was first identified, one study em-
ployed in situ hybridisation and immunocytochemistry 
to determine whether ghrelin could be expressed in the 
human pancreas [51]. Findings suggested that ghrelin 
had an effect on insulin production, being capable of 
suppressing this production in both humans and ro-
dents, and β cells mediated the action of ghrelin [51].

The presence of immunoreactive ghrelin cells 
throughout the human pancreas has been confirmed 
via immunostaining. More specifically, the α, β, and 
δ cells in pancreatic islets have been found to have 
endogenous expression of ghrelin, whilst the α and 
β cells are the main types of pancreatic cells with 
GSH-R1a expression [60, 99]. Furthermore, the foetal 
and neonatal pancreas seems to have a considerably 
higher number of ghrelin cells than the adult pan-
creas. Moreover, evidence has been produced that 
immunoreactive ghrelin cells are never associated 
with hormone in the common α, β, δ, and PP-cells 
in pancreatic islets, as indicated by double or triple 
immunostaining for ghrelin and the four major islet 
hormones, namely, glucagon, insulin, somatostatin, 
and PP-cells [40]. Ghrelin cells have been confirmed 
to contribute to foetal and neonatal cellular devel-
opment in rat pancreas [25, 67, 101], whilst also 
occurring in mouse pancreas [16].

Ghrelin immunoreactivity has also been reported 
in Langerhans cell islets, as well as in human β cells 
and human α cells [18].

Furthermore, from day 8 of mouse embryonic 
development, ghrelin cells start to participate in the 
formation of Langerhans islets. The pancreas secretes 
ghrelin on a constant basis during embryonic devel-
opment, but the release rate decreases rapidly after 
birth. In humans, only a particular group of cells 
has ghrelin expression in islets; by contrast, in mice,  
a subset of ε-cells is chiefly responsible for the gluca-
gon-based production of ghrelin in islets.

GHS-R has been reported to be extensively dis-
tributed within the lymphoid system, leading to the 
suggestion that ghrelin and GHS-R ligands could be 
potential signal modulators within the immune and 
endocrine systems, as well as between the central 
and peripheral nervous systems. Furthermore, human 
urogenital organs could possibly include nerve-im-

mune activity, as deduced from rat model research on 
ghrelin-positive mast cells in autonomic nerves [72].

CONCLUSIONS
The stomach is the main source of ghrelin. In 

terms of cellular types, the stomach and other areas 
of the GIT contain different forms of ghrelin cells, 
with both open-type and closed-type of ghrelin cells 
being present in the stomach and large and small 
intestines. The ghrelin cells in the stomach are con-
sidered to contribute the largest amount of ghrelin 
in the plasma, whereas the large and small intestines 
contribute a smaller amount. Further research is nec-
essary in order to shed more light on the biological 
and histopathological properties of the ghrelin cells 
present in the large and small intestines.  
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