An unusual case of unilateral supernumerary extensor carpi radialis muscle

Authors: Laura Grigoriță, Cristina Gug, Monica Adriana Vaida, Adelina Maria Jianu, Nawwaf Sebastian Damen

DOI: 10.5603/FM.a2019.0037
Article type: CASE REPORTS
Submitted: 2019-02-08
Accepted: 2019-03-15
Published online: 2019-04-03

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
An unusual case of unilateral supernumerary extensor carpi radialis muscle

Running head: Supernumerary extensor carpi radialis muscle

Laura Grigoriță¹, Cristina Gug², Monica Adriana Vaida¹, Adelina Maria Jianu¹, Nawwaf Sebastian Damen³

¹Department of Anatomy and Embryology „Victor Babeș” University of Medicine and Pharmacy, Timisoara, Romania
²Department of Microscopic Morphology, „Victor Babeș” University of Medicine and Pharmacy, Timisoara, Romania
³Pediatric Surgery Clinic of Emergency Children’s Hospital, Timisoara, Romania

Address for correspondence: Monica Adriana Vaida, Department of Anatomy and Embryology „Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania, e-mail: vaida.monica@umft.ro

Abstract
An uncommon anatomical variant of muscle was found during the dissection of the forearm region, that can be considered as a supernumerary extensor carpi radialis muscle. The identified extensor carpi radialis muscle has origin on the lateral supraepicondylar ridge of the humerus, and an unusual insertion on the tubercle of the scaphoid bone. The presence of this supernumerary muscle may cause diagnostic errors in the forearm region, and can produce a debilitating pain syndrome by secondary compression of adjacent nerves, vessels or tendons due to its course along the anterior compartment of the forearm.

Key words: supernumerary muscle, forearm, extensor carpi radialis longus muscle

INTRODUCTION
The posterior compartment of forearm contains in its lateral or radial part three muscles, brachioradialis, extensor carpi radialis longus (ECRL) and extensor carpi radialis brevis (ECRB). Three variants of supernumerary muscles have been described in the
literature, extensor carpi radialis intermedius ECRI [3, 9, 17], extensor carpi radialis accessories ECRA, both describe by Woods [3], and extensor carpi radialis tertius ECRT [21]. Classically ECRL muscle take origin on the distal third of the lateral supracondylar ridge of the humerus, on the lateral intermuscular septum and on the common extensor origin. The muscle belly continues with a flat tendon which course along lateral surface of the radius, under abductor pollicis longus (APL) and extensor pollicis brevis (EPB), through the second chamber of the extensor retinaculum and insert on radial side of base of the second metacarpal [21]. The variation of ECRL is summarized in Table 1. Our study supplements the knowledge of muscle variation in the forearm and is of profound interest for the clinician.

Table 1

CASE REPORT

During the routine dissection studies for medical students, in the Department of Anatomy and Embryology, „Victor Babeş” University of Medicine and Pharmacy, Timisoara, a unilateral variant of supernumerary muscle was found in a 60-year-old male formalin-fixed cadaver. During the dissection of the lateral antebrachial regions of the left upper limb, we found an additional belly of muscle, which take origin between the left supraepicondylar ridge, common with the extensor carpi radialis longus and the lateral epicondyle of the humerus, common with extensor carpi radialis brevis, runs craniocaudally between extensor carpi radialis longus and extensor carpi radialis brevis (figure 1), and in the middle of the lateral part of the forearm, its tendon cross the tendons of the brachioradialis and ECRL muscles, passing anterior to them, and in relation with the inferior lateral cutaneous nerve of the arm. In contrast to the above - mentioned studies, the tendon of the supernumerary muscle had an unusual insertion on the tubercle of the scaphoid bone (figure 2, figure 3).

DISCUSSIONS

ECRL and the three variants of supernumerary muscles, ECRI, ECRA and ECRT were studied by many researchers [20] using dissection, sonography [7] or by making volumetric-models of extra- and intramuscular innervation [13]. Most of results derived
from cadaver studies, with all the limitations of distortion from embalming, positioning and comorbidity [8]. ECRI take origin between ECRB and ECRL [3, 9], and inserted on the second or third metacarpal. ECRA originates from the fascia superficial to ECRL and ECRB [3], or as a muscular slip from the belly of ECRL [1, 18], or as an additional belly of ECRL [11, 19], and inserts on the first metacarpal [3], or into the abductor pollicis longus or abductor pollicis brevis muscles [9]. Classen described an accessory head of the ECRL [4] which tendon inserted in the middle of the first metacarpal bone. ECRT take origin from the common extensor origin between ECRL and extensor digitorum and inserted on the second and third metacarpal. In the literature (Table 1), were described other variations of ECRL, with normal origin on the lateral supracondylar ridge and then trifurcated in three heads, lateral and intermediated heads with insertion on the base of the second metacarpal bone and medial head with insertion which merge with ECRB muscle [22]. Yoshida [23] describe the muscle bellies of ECRL and ECRB with laminar disposition. Some researchers describe ECRL and ECRB exchanging fleshy or tendinous slips, which can be replaced by distinct muscle [20]. We did not find a classical example of the three variants of supernumerary muscle in our study. Regarding its origin, the supernumerary muscle can be classified as ECRI, or as an additional belly of ECRL, but regarding its insertion, it doesn’t belong to this group.

The limb musculature develops from paraxial mesoderm, and in the seventh week of development appears as a condensation of mesenchyme, near the base of the limb buds [15]. With elongation of the limb buds, the muscle tissue splits into flexor and extensor components, which then fuse and form a single muscle mass, so the muscles of the superior limb are composed from tissue derived from several segments, specifically, the lower five cervical and upper two thoracic segments. Under myogenic regulatory factors, some muscle primordia of these muscle mass suffer a cell-death. The persistence of cells not-undergoing into the process of cell-death may explains an additional muscle [17].

Studies made on animals [5], revealed that the ECRL and ECRB muscles differs markedly amongst species in the animal classification system. Cossu [5] described two muscles in human, a single muscle in sheep and intermediate states (division in the distal third) in other species, like dog and cat, evolution accompanied by modification of blood supply. In human each muscle is irrigated by a distinct arterial system, in cat two distinct branches for each head of extensor carpi radialis muscle, and in dog and sheep by a single branch
from the transverse ulnar artery. Regarding the innervation of ECRL, even when the muscle is separate in two slips, they share the innervation from the radial nerve. In human the 3-D modeling study reveal one primary branch from the radial nerve proper divided into anterior and posterior branches, that supplied the superficial and deep region of ECRL muscle belly, so the muscle demonstrate neuromuscular compartmentalization based on intramuscular innervation [13]. So the presence of a supernumerary muscle can be considered an expression of atavism, and most muscle anomalies are referable to an underexpression of particular developmental factors [2].

These supernumerary muscle bellies of the forearm, especially with unusual insertion can produce a debilitating pain syndrome, secondary to a tendon-muscle shear phenomenon [14] and might misguide the surgeon during surgery and during diagnosis [6, 12] and may be useful for reconstruction of hand function in tetraplegic patients [10, 16].

CONCLUSIONS
This rare anatomic variant of extensor carpi radialis muscle, had to be considered by clinicians, because it may cause diagnostic errors in ultrasounds scans or the additional tendon at the wrist may cause a radial tunnel syndrome.

Acknowledgements
We acknowledge to Mihaela Damen who made the drawing of the present case.

Funding sources
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Statement of ethics
The research was conducted ethically in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki).

Disclosure statement
The authors have no conflict of interests to declare.
References

Table 1. Variation of extensor carpi radialis longus muscle (ECRL) – a review from the literature

<table>
<thead>
<tr>
<th>Cadaver</th>
<th>Author, year</th>
<th>Origin</th>
<th>Tendinous course</th>
<th>Insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right and left</td>
<td>Albright, 1978</td>
<td>Additional tendon arising proximally from ECRL or ECRL tendon bifurcated</td>
<td>On the ulnar side of ECRL or deep to ECRB tendon</td>
<td>Common insertion with ECRB, or on the base of the second metacarpal bone</td>
</tr>
<tr>
<td>Right and left</td>
<td>Yoshida, 1994</td>
<td>Laminar disposition of ECRL (additional slips) around a main part</td>
<td>The tendons of additional slips joined to ECRB or to the main part. The tendons of the main part and additional slips may be separated of each other or fused in the distal end</td>
<td>Main part on the base of second metacarpal bone. The additional slips on the first to third metacarpal bones</td>
</tr>
<tr>
<td>Right</td>
<td>Classen, 2002</td>
<td>One accessory head</td>
<td>The tendon passed through a separate tunnel in the extensor retinaculum</td>
<td>On the middle of the first metacarpal bone</td>
</tr>
<tr>
<td>Right</td>
<td>Nayak, 2008</td>
<td>Additional muscle with origin on the common extensor origin</td>
<td>The additional muscle divides below the abductor pollicis longus</td>
<td>On the base of the second and third metacarpal bones</td>
</tr>
<tr>
<td>Right</td>
<td>Prakash Rai, 2008</td>
<td>On the lateral supracondylar ridge of the humerus and on the lateral intermuscular septum</td>
<td>Muscle belly divided into two tendons which passed in the second compartment of extensor retinaculum</td>
<td>On the base of the second metacarpal</td>
</tr>
<tr>
<td>Right</td>
<td>Sawant, 2013</td>
<td>On the lateral supracondylar ridge of the humerus and on the lateral</td>
<td>Muscle belly dividing into two tendons, passing in the second compartment of extensor</td>
<td>One tendon into the radial side of the dorsal surface of the base of the second</td>
</tr>
</tbody>
</table>
intermuscular septum retinaculum metacarpal bone and the other tendon into the lateral dorsal surface of the base of the third metacarpal bone

<table>
<thead>
<tr>
<th>Right</th>
<th>Srimani, 2014</th>
<th>Additional belly having common origin with ECRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>Yang, 2018</td>
<td>On the lateral supracondylar ridge of the humerus</td>
</tr>
</tbody>
</table>

ECRL – extensor carpi radialis longus; ECRB – extensor carpi radialis brevis

FIGURE LEGEND

Figure 1. Dissection revealing the brachioradialis muscle (1), the extensor carpi radialis longus muscle (2), the newly found supernumerary extensor carpi radialis muscle (3) and the extensor carpi radialis brevis muscle (4).

Figure 2. Dissection revealing the newly found supernumerary extensor carpi radialis muscle (1) with its insertion on the tubercle of the scaphoid bone (2), the abductor pollicis longus muscle (3), the radial artery (4), the extensor carpi radialis longus muscle (5) and the extensor carpi radialis brevis muscle (6).

Figure 3. Drawing illustrates the brachioradialis muscle (1), the extensor carpi radialis longus muscle (2), the extensor carpi radialis brevis muscle (3) and the newly found supernumerary extensor carpi radialis muscle (4) with its insertion on the tubercle of the scaphoid bone (5).