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Background: Lesion in spinal cord causes a cascade of events such as the apoptosis 
of neurons and eventually, neurological dysfunction. Neurologic damage devel-
oping after acute spinal cord injury is also related with necrosis and free radical 
formation. Allopurinol, a xanthine oxidase inhibitor, was shown to have protec-
tive effects in several studies. B-cell lymphoma 2 (Bcl-2) family proteins regulate 
apoptosis. Apoptosis causes the death of neuronal cells, particularly neurons and 
oligodendrocytes in the spinal cord after lesion. Glial fibrillary acidic protein (GFAP) 
takes part in astrocyte and neuronal interconnection and synaptic transmission. 
Materials and methods: Male Sprague Dawley rats (n = 30) were divided as 
control, trauma, and trauma + allopurinol (i.p., 50 mg/kg of body weight) groups. 
Animals were applied a surgical procedure causing spinal cord injury and treated 
for 7 days then sacrificed under anaesthesia. The spinal cords were dissected, 
measurements of myeloperoxidase, malondialdehyde and glutathione were per-
formed, remaining parts were fixed in 10% formaldehyde solution for histological 
and immunohistochemical evaluations. 
Results: Biochemical results exhibited an increase in myeloperoxidase levels 
in trauma group but a decrease in the allopurinol treatment group similar to 
malondialdehyde levels. Degenerative changes in multipolar and bipolar neurons 
together with apoptotic changes in some glial cells were observed in the trauma 
group whereas, mild degenerative changes were observed after allopurinol treat-
ment. In the trauma group, negative GFAP expression in multipolar versus bipolar 
neuronal processes with a reduction in glial processes around blood vessels and 
positive GFAP expression were observed but, a regular and parallel positive GFAP 
expression of glial processes around blood vessels in the allopurinol treated group 
was apparent. Trauma group depicted a positive Bcl-2 expression in glial cells and 
in motor and bipolar neurons. On the contrary, negative Bcl-2 expression was 
noticed in the trauma + allopurinol group. 
Conclusions: This study is of importance to understand the effects of allopurinol 
in preventing degenerative changes in nerve and glial cells related to spinal cord 
injuries. (Folia Morphol 2019; 78, 4: 676–683)

Key words: allopurinol, glial fibrillary acidic protein, B-cell lymphoma 2, 
spinal cord injury, rat



677

M. Baloğlu, E. Gökalp Özkorkmaz, Neuroprotective effects of allopurinol on spinal cord injury in rats

INTRODUCTION
Motor, sensory and autonomic dysfunctions are 

consequences of spinal cord injury (SCI) occurring 
on the cervical spine causing problems in cervical, 
thoracic, lumbar, and sacral levels under injury [3]. 
SCI are accompanied by apoptosis of neurons and the 
initiation of glial cells, which results in neurological 
dysfunction. Lesion on spinal cord triggers infiltration 
of inflammatory cells and irreversible loss of neurons 
[15, 35]. Neurologic damage occurring after acute SCI 
involves necrosis after primary mechanic injury and 
secondary injury then, apoptosis takes place [5]. So, 
previous studies reveal strong evidence demonstrat-
ing the presence of apoptosis after SCI. 

Pathogenesis of spinal cord neuronal lesion after in-
jury is also related with oxygen-derived free radical for-
mation leading to oedema and inflammatory response. 
After spinal cord lesion disabilities and deficits such as; 
loss of motor, sensory and autonomic sensory system 
capabilities, muscle spasms, chronic pain, and urinary 
tract diseases may appear [1]. A study on imatinib was 
demonstrated that functional outcomes like locomotor 
capacity and bladder function and also histological 
parameters (tissue sparing, axonal sparing, astrogliosis, 
inflammation and BSCB permeability) were improved 
following spinal cord weight-drop lesion [2].

Allopurinol, [4-hydroxy-pyrazole(3,4-d) pyrimi-
dine], a xanthine oxidase inhibitor, was shown to have 
protective effects during ischaemia [4] by blocking 
purine breakdown. It easily crosses the blood–brain 
barrier and throughout cerebral ischaemia takes part 
in the protection of cells [37]. Allopurinol is a free 
radical scavenger that is used to treat several diseases 
such as; vascular injury, inflammation [26], ischaemic 
heart disease [7, 38], heart failure [14], and myocar-
dial protection during cardiac or aortic surgery or 
post-ischaemic reperfusion [39]. It is also used to 
treat gout [41], hyperuricaemia [28], and inflamma-
tory arthritis with relatively minor adverse effects for  
a long time. Allopurinol prohibits the process of ax-
onal damage and demyelination induced by oxidative 
stress and proinflammatory cytokines [27, 31]. Palmer 
et al. [27], reported that allopurinol administered  
15 min after cerebral hypoxia-ischaemia in neonatal 
rats reduced brain oedema, neuronal necrosis, and 
cystic infarction. Allopurinol’s neuroprotective mech-
anism was attributed to its ability to inhibit xanthine 
oxidase in previous studies that in the brain, xanthine 
oxidase is concentrated within endothelial cells, sub-
ject the blood–brain barier to free radical attack [40].

B-cell lymphoma 2 (Bcl-2) family proteins monitor 
apoptosis and regulate this complex molecular net-
work. Various cellular events such as DNA damage, en-
ergy stress, loss of growth factor signalling and hypoxia 
can initiate apoptosis by activation of these proteins. 
The Bcl-2 family proteins take prominent roles such 
as regulation of mitochondrial or intrinsic apoptotic 
response [29]. Apoptosis causes the death of neuronal 
cells, particularly neurons and oligodendrocytes in the 
spinal cord after lesion, later corrupts axon myelin 
anatomical unit and gives rise to an interruption in 
impulse transmission leading to neuronal loss [30, 43].

Glial fibrillary acidic protein (GFAP) acts in astro-
cyte–neuronal interconnection and synaptic transmis-
sion [22]. As an intermediate filament protein GFAP 
is found in the skeleton of astroglia. Previous studies 
indicated that increased GFAP immunoreactivity is  
a sensible indicator of neuronal damage in tissue and 
an increase in GFAP is also an indicator of reactive 
astrocytosis. Damage caused by a trauma or disease 
in cerebral tissue or spinal cord cells is known to 
initiate acceleration in blood GFAP level [17, 36, 44].

In this experimental study, the role of allopurinol 
in rats with spinal cord injury and the immunohisto-
chemical expression of GFAP and Bcl-2 proteins were 
investigated.

MATERIALS AND METHODS
Animals

Every single surgical methodology and the conse-
quent care and healing of the animals utilised as a part 
of this investigation were in strict understanding with 
the National Institutes of Health (NIH Publications No. 
8023, revised 1978) rules for animal care. All experi-
mental protocols were approved by the Dicle University 
Animal Care and Use Committee. Male Sprague Dawley 
rats (n = 30) weighing 250–290 g were kept under the 
conditions of 22 ± 1°C and 12/12 h light/dark cycles with 
standard pellet and water ad libitum. All rats at the end 
of experiment were healthy and no difference in food/ 
/water consumption and body weight gain between 
experimental and control rats were observed. Rats were 
separated into three groups as; control group, trauma 
group and trauma + allopurinol group. Isotonic saline 
solution (an equal volume of allopurinol) was adminis-
tered i.p. for 7 days in the control and trauma groups. 
Fifteen minutes following trauma, the allopurinol  
solution was injected intraperitoneally for 7 days at  
a concentration of 50 mg/kg of body weight (Urikoliz 
300 mg, Ilsan, Turkey, 50 mg/kg). Spinal cord tissue 
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taken from L1-L2 spinal cord segments was extracted, 
fixed in a 10% formalin solution, and embedded in 
paraffin blocks for histopathologic examination in all 
groups. Sections (5 µm thick) were obtained from par-
affin blocks and stained with haematoxylin and eosin 
(H&E) for light microscopy examination.

Surgical procedure

Experimental animals were anesthetised intra-
peritoneally with ketamine and chlorpromazine  
75 mg/kg and 1 mg/kg, separately [42]. Each rat was 
then positioned on a heating pad in a prone posi-
tion and a rectal test was embedded. Under aseptic 
conditions, following T5-12 midline skin incision and 
paravertebral muscle dissection, spinous procedures 
and laminar arcs of T5-12 were evacuated. The par-
ticular relative angulation of the spinous procedures 
of the T9, T10, and T11 vertebrae was utilised as 
an imperative intraoperative landmark: T9 points 
caudally, T10 points directly dorsal, and T11 points 
rostrally. This delivers a solid “triangle” introduction 
that can be promptly checked whether the animal is 
positioned flat on the operating table. After the T11 
and T12 vertebrae had been distinguished, a lami-
nectomy was performed at T11 and T12 with Fried-
man-Pearson rongeurs. The clasp was then held open 
with a clasp utensil, with the lower cutting edge of 
the clasp passed extradurally completely around the 
spinal cord and nerve roots at the intersection between 
the T11 and T12 vertebrae, comparing to the L1-L2 
spinal cord segmental level. The clasp was then quickly 
discharged from the tool to deliver a bilateral impact 
force and sustained dorsal-ventral compression. The 
compression of the spinal cord was kept up for 60 s 
before expulsion of the clasp. The muscles were then 
sutured utilising 3– 0 polyglactin sutures, and the skin 
was shut with Michel clips [24]. Following surgical sys-
tem, the rats were put in warming chamber and their 
body temperatures were kept up at roughly 37°C until 
the point when they were totally conscious. An hour 
after the spinal cord injury, only saline was injected 
intraperitoneally to the trauma group.

Histological preparation and analysis

At the end of the experiment, all animals were 
anesthetised via the intraperitoneal administration 
of ketamine HCl (0.15 mL/100 g body weight). The 
spinal cords were dissected. The sections were sub-
jected to H&E staining for observation under a light 
microscope.

Haematoxylin and eosin staining procedure

1.	 Deparaffinised sections, two changes of xylene,  
10 min each.

2.	 Re-hydrate in two changes of absolute alcohol,  
5 min each.

3.	 95% alcohol for 2 min and 70% alcohol for 2 min.
4.	 Wash briefly in distilled water.
5.	 Stain in Harris haematoxylin solution for 8 min.
6.	 Wash in running tap water for 5 min.
7.	 Differentiate in 1% acid alcohol for 30 s.
8.	 Wash running tap water for 1 min.
9.	 Bluing in 0.2% ammonia water or saturated lithi-

um carbonate solution for 30 s to 1 min.
10.	Wash in running tap water for 5 min.
11.	Rinse in 95% alcohol, 10 dips.
12.	Counterstain in eosin-phloxine solution for 30 s 

to 1 min.
13.	Dehydrate through 95% alcohol, two changes of 

absolute alcohol, 5 min each.
14.	Clear in two changes of xylene, 5 min each.
15.	Mount with xylene based mounting medium.

Immunohistochemical staining 

An antigen-retrieval process was performed in cit-
rate buffer solution (pH 6.0) two times: first for 8 min 
and afterward for 5 min in a microwave oven at 700 W.  
They were permitted to cool to room temperature 
for 20 min and washed in distilled water twice for  
6 min. Endogenous peroxidase action was hindered in 
0.1% hydrogen peroxide for 15 min. An ultra V block 
(Histostain-Plus Kit, Invitrogen, Carlsbad, CA) was 
connected for 10 min before the use of the primary 
antibodies (Bcl-2 antibody, mouse monoclonal, 1/100, 
Santa Cruz Biotechnology, US) and GFAP antibody 
(mouse monoclonal, 1/100, Abcam, UK) overnight. 
The secondary antibody (Histostain-Plus Kit, Invitro-
gen, Carlsbad, CA) was connected for 15 min. At that 
point, the slides were exposed to streptavidin-peroxi-
dase for 15 min. Diaminobenzidine (DAB, Invitrogen, 
Carlsbad, CA) was utilised as a chromogen. Control 
slides were set up as specified above yet overlooking 
the primary antibodies. In the wake of counterstaining 
with haematoxylin, washing in tap water for 5 min,  
and in refined water for 2 × 5 min, the slides were 
mounted.

Measurement of myeloperoxidase activity 

The myeloperoxidase (MPO) activity levels were 
measured using the method described by Hillegass 
et al. [18]. Spinal cord tissue specimens were homog-
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enised in 50 mM potassium phosphate buffer with  
a pH of 6.0 and centrifuged at 41,400 g for 10 min. 
The pellets were then suspended in 50 mM PB con-
taining 0.5% hexadecyl trimethyl-ammonium bro-
mide (HETAB). After three freezes and defrost cycles, 
with sonication between cycles, the samples were 
centrifuged at 41,400 g for 10 min. Aliquots (0.3 mL)  
were added to 2.3 mL of the response mixture con-
taining 50 mM PB, o-dianisidine, and 20 mM H2O2 
solution. One unit of enzyme action was character-
ised as the measure of MPO presence that caused 
an adjustment in absorbance, estimated at 460 nm 
for 3 min. MPO action was expressed as U/g tissue.

Malondialdehyde and glutathione assays 

Spinal cord tissue samples were homogenized 
with super cold 150 mM KCl for the assurance of 
malondialdehyde (MDA) and glutathione (GSH) levels. 
The MDA levels were tested for the products of lipid 
peroxidation and the outcomes are expressed as nmol 
MDA/g tissue [21]. GSH was resolved by a spectro-
photometric technique in light of the utilisation of 
Ellman’s reagent and the outcomes are expressed as 
μmol GSH/g tissue [11].

Statistical analysis 

All information is expressed as means ± standard 
deviation. Groups of information were contrasted and 
an analysis of variance (ANOVA) trailed by Tukey’s 
various correlation samples. Estimations of p value  
(p < 0.05, vs. control; p < 0.001, vs. control; p < 0.01,  
trauma + allopurinol vs. trauma; p < 0.001, trauma +  
+ allopurinol vs. trauma) were considered as signif-
icant.

RESULTS
Control, trauma and trauma + allopurinol groups 

were analysed for biochemical data. MPO action, 
which is acknowledged as an indicator of inflamma-
tory cells, was fundamentally higher in the spinal cord 

tissues of disturbed rats than those of the control 
group (p < 0.001).

Allopurinol treatment reduced spinal cord tissue 
MPO levels (p < 0.01) when compared to the trauma 
group. The injury caused a significant increment in 
the MDA levels (p < 0.001) with a reduction in GSH 
levels (p < 0.001). Allopurinol caused a decrease in 
MDA levels and re-established the GSH content at 
day 7 (Table 1, Fig. 1).

Histopathologic findings

In the cross-section of the control group; spinal 
cord, ependymal canal, which was paved with cy-
lindrical epithelium, multipolar and bipolar neurons 
were diffusely distributed in substantia grisea. In 
the substantia alba layer, regular and nerve exten-
sion of the glial cells were observed (Fig. 2a). In the 
trauma group, hyperplasia of epithelial cells with 
dilatation of the ependymal canal, and degenerative 
changes in multipolar and bipolar neurons together 
with apoptotic changes in some glial cells were 
observed. In the substantia grisea and alba layer, 

Table 1. Biochemical results of experimental groups

Control Trauma Trauma + allopurinol

Malondialdehyde [nmol/g] 27.75 ± 0.85 41.95 ± 0.72** 28.32 ± 0.82++

Glutathione [µmol/g] 1.46 ± 0.04 0.72 ± 0.05* 1.32 ± 0.04++

Myeloperoxidase [U/g] 3.37 ± 0.05 7.54 ± 0.58** 6.75 ± 0.49+

Values are represented as mean ± standard deviation. Each group consists of ten rats.
*p < 0.05, vs. control; **p < 0.001, vs. control; +p < 0.01, trauma + allopurinol vs. trauma; ++p < 0.001, trauma + allopurinol vs. trauma

Figure 1. Biochemical results relevant to the study groups; GSH — 
glutathione; MDA — malondialdehyde; MPO — myeloperoxidase.
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congestion in the vessels and degeneration in the 
endothelial cells and ruptures in the nerve exten-
sions were observed (Fig. 2b). In the group treated 
with allopurinol after trauma, mild degenerative 
changes were observed in multipolar and bipolar 
neurons compared to the trauma group, while the 
structure of the blood vessels in the endothelial 
cells was preserved (Fig. 2c).

Immunohistochemical findings

In the control group, Bcl-2 was weakly expressed 
in the cytoplasm of neurons of anterior and dorsal 
horn and intermediate zone. Occasionally, positive 
glial cells were observed in substantia grisea layer 
(Fig. 3a). Bcl-2 expression was positive in glial cells 
and degenerative changes were seen in motor neuron 
and bipolar neurons in the trauma group. Bcl-2 ex-
pression was positive in glial cells in some multipolar 
and bipolar neurons after trauma (Fig. 3b). Negative 
Bcl-2 expression was observed in multipolar, bipolar 
and glial cells in the group treated with allopurinol 
after trauma (Fig. 3c). GFAP expression was positive 
in the control group sections and in the extension of 
multipolar bipolar neurons and glial processes (Fig. 4a).  
In the trauma group, GFAP expressions were evaluat-
ed as positive in degenerative structures in neurons 
and glial processes with irregular distribution of nerve 
extensions around degenerative structures in dilated 
blood vessels. In the trauma group, a decrease in as-
trocyte processes and a GFAP positive reaction were 
observed in the substantia grisea region (Fig. 4b). In 
post-traumatic allopurinol group, it was observed 
that the extension of the glial cells was in parallel 
with the extension of the neurons around the blood 
vessels in the multipolar and bipolar neurons and 
GFAP protein expression was observed (Fig. 4c).

DISCUSSION
Spinal cord injuries may be caused by damage to 

the vertebrae, ligaments or spinal discs or the spinal 
cord itself. It has been reported that SCI may delay 
the repair of large thoracoabdominal aortic diseases 
for ischaemic reasons. It was also reported that inter-
costal and lumbar artery blood flow in the spinal cord 
and postoperative neurological deficiencies occurred 
in many cases [19, 32].

A significant output of SCI is the formation of 
oxidative stress. Oxidative stress plays a critical role 
in the pathophysiology of SCI is long known fact [10, 
12, 33]. After lesion, apoptosis gives rise to the death 

of cells such as; neuronal cells, oligodendrocytes and 
also neurons in the spinal cord, and even more breaks 
down the axon myelin anatomical unit and prohibits 
impulse conduction, leading to neuronal loss [30, 
43]. After spinal cord lesion, inflammation of the 
spinal cord and obstructed vascular structure besides 
apoptotic changes in neurons can be seen. When 
apoptosis of neurons and glial cells is retained after 
the lesion, loss in the nerve tissue can be reduced 
and spinal cord lesion may become improved. Inflam-
matory reactions are significant components of the 
secondary lesion and they are supposed to be a part 
in controlling the pathogenesis of chronic SCI and 
possess a prominent role in nerve lesion and also act 
in regenerative reactions [16]. Inflammatory reactions 
may attend apoptosis of neurons and oligodendro-
cytes in scar formation also causing a reduction of 
neuronal capacity [34]. In the trauma group of our 
study, hyperplasia of epithelial cells with dilatation of 
the ependymal canal, and degenerative changes in 
multipolar and bipolar neurons together with apop-
totic changes in some glial cells and congestion in the 
blood vessels and degeneration in the endothelial cells 
and ruptures in the nerve extensions were observed 
(Fig. 2b). In the group treated with post-traumatic 
allopurinol, mild degenerative changes were observed 
in the multipolar and bipolar neurons compared to the 
trauma group (Fig. 2c).

A study of Chen et al. [9] presented that in trans-
genic mice, over-expression of Bcl-2 by gene transfer 
caused to a decline in infarction after permanent and 
transient central ischaemia. Expression of Bcl-2 gene, 
acting as the apoptosis inhibitor, seems to protect 
cells from apoptosis, especially motor neurons of 
the spinal cord [9]. In our study, an increase in Bcl-2 
expression was observed in glial cells in multipolar 
and bipolar neurons after apoptotic changes in glial 
cells in some of the endothelial cells (Fig. 3a). Nega-
tive Bcl-2 expression was observed in glial cells and 
multipolar and bipolar neurons in the post-traumatic 
allopurinol treated group (Fig. 3b).

Baloglu et al. [6] found a decrease in the apop-
tosis of nerve cells and glial cells by the application 
of Potentilla fulgens after SCI. They suggested that 
Potentilla fulgens reduced the amount of so-called 
inflammatory cells and stimulated angiogenetic pro-
gression by affecting the cytokine mechanism.

Glial fibrillary acidic protein is a brain-specific 
protein that acts as the major integral component 
of the cell skeleton of astrocytes. After brain injury, 
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GFAP releases the brain cells into the interstitial fluid 
in the environment and causes deterioration in the 
blood–brain barrier [23]. In many pathological con-

ditions of the central nervous system and astrocytes, 
GFAP expression is increased. Studies on experimental 
animals revealed GFAP positive expression in astro-

Figure 4. a. Glial fibrillary acidic protein (GFAP) immunostaining (control group). Positive GFAP expression in multipolar bipolar neurons and 
glial processes. Scale bar = 50 μm; b. GFAP immunostaining (trauma group). Negative GFAP expression in multipolar versus bipolar neuron 
processes while reduction in glial processes around blood vessels and positive GFAP expression. Scale bar = 50 μm; c. GFAP immunostain-
ing (trauma + allopurinol group). Regular and parallel positive GFAP expression of glial processes around blood vessels. Scale bar = 50 μm.

Figure 2. a. Haematoxylin and eosin (H&E) staining (control group). Diffuse distribution of multipolar and bipolar neurons in substantia grisea, 
regular nerve extensions of the glial cells in substantia grisea and alba. Scale bar = 100 μm; b. H&E staining (trauma group). Hyperplasia 
in ependymal cells, dilatation in ependymal channel, degenerative changes in multipolar and bipolar neurons, apoptotic changes in some 
glial cells, congestion in the blood vessels of the substantia grisea and alba layer. Scale bar = 50 μm; c. H&E staining (trauma + allopurinol 
group). Moderate degenerative changes in multipolar and bipolar neurons. Scale bar = 50 μm.

Figure 3. a. B-cell lymphoma 2 (Bcl-2) immunostaining (control group). Weak Bcl 2 expression in the cytoplasm of neurons of anterior horn, 
dorsal horn and intermediate zone. Scale bar = 50 μm; b. Bcl-2 immunostaining (trauma group). Positive Bcl-2 expression in glial cells and 
in motor neuron, bipolar neurons. Scale bar = 50 μm; c. Bcl-2 immunostaining (trauma + allopurinol group). Negative Bcl-2 expression in 
multipolar, bipolar and glial cells in allopurinol group. Scale bar = 50 μm.
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glial cells following traumatic brain injury [17, 44]. 
Allopurinol is a specific inhibitor of xanthine oxidase, 
and it blocks the synthesis of xanthine from hypox-
anthine and inhibits the formation of free radical 
superoxide [13]. In the trauma group of our study, 
GFAP expression in glial cells was evaluated as positive 
with degenerative neuron and a decrease in astrocytic 
ankles around dilated blood vessels (Fig. 4b). In the 
allopurinol treated group, glial feet around the blood 
vessel were regular and it was showed that GFAP 
protein expression increased in multipolar and bipolar 
neuron extensions (Fig. 4c).

Studies have shown that allopurinol leads to  
a decrease in the levels of free radical production 
and reduces tissue damage associated with I/R injury 
[8, 13]. It is both a strong xanthine oxidase inhibitor 
and an agent that decreases ischaemia related mito-
chondrial dysfunction [8, 20]. As a result of a study 
by Moorhouse et al. [25], high doses have been sug-
gested for the neuroprotective effects of allopurinol. 
It has also been shown that high levels of allopurinol 
and its metabolite oxypurinol in the blood can act as 
a scavenger and move hydroxyl radical and transition 
metal chelating agents [10]. On the contrary, another 
study indicated that the high dose allopurinol had 
an intraperitoneal protective effect but showed no 
therapeutic effect in transient focal cerebral ischaemia 
in the three-vessel occlusion model in rats [20]. 

Despite the results, there are a few limitations. 
Allopurinol may be applied for a longer period of 
time; however, we applied for 7 days and examined 
its short-term effect. We also preferred a lower dose, 
unlike high doses, not to enable a toxic effect. Known 
side effects of allopurinol are dermatologic (pruritic, 
erythematous, or macropapular eruptions), hema-
tologic (leukopenia and/or eosinophilia, white blood 
count abnormalities), and hepatologic (increase in 
liver enzymes) [25] so, it was investigated wheth-
er allopurinol has an osteoblastic effect at lower 
dosages, since short-term administration at minimal 
concentrations would be more appropriate.

CONCLUSIONS
We think that GFAP expression in glial processes 

deteriorated in the multipolar, bipolar neuron extensions 
and blood vessel environment after SCI and in inflam-
matory response after trauma and tissue damage. We 
are in the opinion that allopurinol has an antioxidative 
effect and it may induce GFAP protein activity in trau-
matic SCI which may affect the repair process in nerve 

connections and ependymal cells after the trauma. As 
a conclusion, allopurinol can partially prevent degener-
ative changes in nerve cells and glial cells and decrease 
apoptotic changes due to Bcl-2 expression.
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