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Background: Acetaminophen (APAP) hepatotoxicity is characterised by an exten-
sive oxidative stress due to depletion of glutathione (GSH), which results in massive 
lipid peroxidation and subsequent liver injury. The current paradigm suggests that 
mitochondria are the main source of reactive oxygen species (ROS), which impair 
mitochondrial function and are responsible for cell signalling resulting in cell death. 
This study was designed to compare the potential impact of thymoquinone (THQ), 
and/or curcumin (CURC) on liver injury induced by APAP toxicity in rats. 
Materials and methods: Serum levels of alanine transaminase, aspartate transam-
inase, total bilirubin, and total protein were measured. In addition, liver nitric oxide 
(NO), malondialdehyde, reduced glutathione (GSH), and superoxide dismutase 
(SOD) were estimated. Moreover, these biochemical parameters were confirmed 
by histopathological and immunohistochemical investigations for the expression 
of thioredoxin, iNOS and caspase 3. 
Results: Acetaminophen toxicity elevated most of the above-mentioned parame-
ters but decreased GSH, SOD, and total protein levels. Histologically, liver sections 
demonstrated liver injury characterised by hepatocellular necrosis with nuclear 
pyknosis, karyorrhexis and karyolysis. Immunohistochemical study revealed in-
creased expression of iNOS and caspase 3 proteins, while the thioredoxin protein 
expression was decreased. 
Conclusions: Treatment with the THQ and CURC regulated the biochemical and 
histopathological alterations induced by APAP toxicity. It was concluded that the 
combination strategy of THQ and CURC might be considered as a potential an-
tidote in combating liver injury induced by APAP with minimal side effects. (Folia 
Morphol 2019; 78, 4: 773–788)
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INTRODUCTION
Acetaminophen (APAP) hepatotoxicity is the leading 

cause of acute liver failure in many countries [12, 50].  
A key mechanism of the toxicity is the cytochrome 
P450-catalysed metabolic activation of APAP, which 
generates the reactive metabolite N-acetyl-p-ben-
zoquinone imine (NAPQI) and initiates toxicity in 
both rodents and humans [34]. Excessive NAPQI 
formation after APAP overdose depletes cellular re-
duced glutathione (GSH), adds proteins including 
mitochondrial proteins, and induces mitochondrial 
oxidant stress and dysfunction. This causes nucle-
ar DNA fragmentation and necrotic cell death and  
a subsequent inflammatory response, including the 
release of pro-inflammatory cytokines and activation 
of immune cells [34].

In the 1980’s, it was recognised that cytochrome 
P450-mediated drug metabolism in microsomes could 
generate reactive oxygen species (ROS) (mainly su-
peroxide and hydrogen peroxide) [40]. Since APAP is 
also metabolised by P450 enzymes in microsomes, 
it was assumed that P450-mediated metabolism of 
APAP generated ROS in APAP hepatotoxicity, lead-
ing to subsequent lipid peroxidation and liver injury 
[76]. This hypothesis was mainly based on the use of 
inducers and inhibitors of cytochrome P450, which 
enhanced and attenuated APAP-induced lipid per-
oxidation, respectively [76]. Lipid peroxidation has 
been a frequently invoked mechanism in ROS-induced 
cell death and liver injury [36, 60, 69]. Another po-
tential source of oxidant stress after APAP overdose 
is the infiltrating neutrophils. These phagocytes are 
the first immune cells to respond to the extensive 
APAP-induced necrosis [43]. However, neutrophils do 
not only produce superoxide and hydrogen peroxide 
by NADPH oxidase, but due to the presence of mye-
loperoxidase, these cells can generate hypochlorite. 
Furthermore, in contrast to Kupffer cells, neutrophils 
are mobile and can extravasate from sinusoids and 
adhere to the targeted hepatocytes to be fully acti-
vated [32]. The adherence to hepatocytes triggers  
a long-lasting oxidant stress in close proximity to the 
target, which allows oxidants such as hydrogen per-
oxide [33] and hypochlorous acid [26–28] to diffuse 
into hepatocytes and induce cell death.

Curcumin (diferuloymethane) (CURC), a polyphe-
nol, is an active ingredient of turmeric (Curcuma 
longa) and is pharmacologically safe for humans and 
animals. CURC has many biological activities, includ-
ing anti-inflammatory, antioxidant, anti-carcinogenic, 

anti-mutagenic, and anti-diabetic activities [14, 48, 
55, 70]. The hepatoprotection of CURC has been 
widely acknowledged and used in traditional medi-
cines for treatment of inflammatory conditions such 
as hepatitis [68]. A previous study demonstrated that 
CURC treatment showed significant decrease in se-
rum transaminase, hepatic malondialdehyde (MDA), 
increasing hepatic GSH, and caused improvement of 
liver histopathology [38, 71, 82].

Thymoquinone (THQ) is the most potent compo-
nent of Nigella Sativa (N. sativa) [7]. Protective effects 
of THQ were established in doxorubicin, carbon tet-
rachloride, cisplatin, ethanol and aflatoxin-induced 
oxidative damage. In addition, the anti-inflamma-
tory, anti-tumoural, anti-microbial, anti-histaminic 
and immuno-modulatory effects of THQ have been 
reported. Moreover, it has been suggested that THQ 
may act as an antioxidant agent and prevent the 
membrane lipid peroxidation in hepatocytes [7]. Alsaif 
[6] found that THQ significantly and dose dependently 
prevented the ethanol-induced acute hepatotoxicity 
by enhancing the hepatic antioxidant activity. Kong 
et al. [39] suggests that THQ has protective effects 
against oxidative damage and liver fibrosis during 
the development of extrahepatic cholestasis caused 
by bile duct ligation. They referred the underlying 
mechanism to body hydroxyproline (HP) content, 
which reduces and maintains the balance of the ox-
idative-antioxidative system.

This study aimed to evaluate and compare the 
ameliorator property of THQ and CURC, alone or 
together, against acetaminophen (paracetamol)-in-
duced biochemical, and histopathological changes.

MATERIALS AND METHODS
Experimental animals and treatment 

Thirty healthy male albino rats (120–160 g) were 
supplied by the Experimental Animal Centre, Col-
lege of Medicine, King Saud University. Animals were 
kept in special cages and maintained on a constant 
12-h light/12-h dark cycle with air conditioning and 
a controlled temperature of 20–22ºC and humidity 
of 60%. Rats were fed a standard rat pellet chow 
with free access to tap water ad libitum for 1 week 
before the experiment for acclimatisation. Animal 
utilisation protocols were performed in accordance 
with the guidelines provided by the Experimental 
Animal Laboratory and approved by the Animal Care 
and Use Committee of the College of Medicine, King 
Saud University. 
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After 1 week of acclimatisation, the rats were 
randomly divided into five groups of 6 rats each as 
follows:
—	 Group 1 (Control group): rats given normal saline;
—	 Group 2 (APAP group): rats given a single oral 

dose of APAP 750 mg/kg [84];
—	 Group 3 (APAP+CURC group): rats given three 

oral doses of CURC 200 mg/kg (purchased from 
Armal company), dissolved in corn oil [4];

—	 Group 4 (APAP+THQ group): rats given three oral 
doses of THQ 15 mg/kg (purchased from Sigma 
Chemical Co., MO, USA), dissolved in corn oil [1, 4];

—	 Group 5 (APAP+CURC+THQ): rats given com-
bination of CURC and THQ in the same previous 
doses for each.
The first dose of CURC and/or THQ was given 24 h  

before APAP administration then the second dose 
was given 2 h after APAP administration, whereas the 
third dose was given 12 h after APAP administration. 
There were no mortalities or affection of health status 
among all the groups.

One day after APAP administration, all animals 
were sacrificed; blood samples were withdrawn from 
them and sera were separated by centrifugation at 
3000 rpm for 20 min and used for biochemical serum 
analysis. After blood collection, the livers were excised 
and washed using chilled saline solution. The livers 
were minced and homogenised in ice-cold bi-distilled 
water to yield 20% homogenates. The homogenates 
were centrifuged for 20 min at 3000 rpm at 5°C, and 
the supernatants were used for biochemical tissue 
analysis. Three livers from each group were kept in 
10% buffered formalin for histopathological exami-
nation and immunohistochemistry analysis.

Biochemical analysis

Serum biochemical assays
— Serum alanine transaminase (ALT)
— Aspartate transaminase (AST)
— Total bilirubin
— Total protein

All these parameters were measured using com-
mercial diagnostic kits from Randox Company (UK) 
following the manufacturer’s instructions. 

Hepatic biochemical assays

Lipid peroxidation (malondialdehyde [MDA]). 
The degree of lipid peroxidation in hepatic tissues was 
determined by measuring thiobarbituric acid reactive 
substances (TBARS) in the liver homogenate [53]. The 

absorbance was measured spectrophotometrically 
at 532 nm.

Reduced glutathione (GSH). Reduced glutathione 
was determined using the method of Ellman GL based 
on its reaction with 5,5’-dithiobis (2-nitrobenzoic 
acid) to yield the yellow chromophore, 5-thio-2-ni-
trobenzoic acid at 412 nm [19].

Total nitrite concentration. Total nitrite was 
measured according to the method described by Mos-
hage et al. [54] using Griess reagent (sulphanilamide 
and N-1-naphthylethenediamine dihydrochloride) in 
acidic medium.

Histopathological and immunohistochemical 
analysis

Liver specimens were excised and fixed in 10% 
buffered formalin overnight, then processed to pre-
pare paraffin wax at 56°C. Serial sections were cut at 
4 μm. These sections were used for histopathological 
examination using haematoxylin and eosin (H&E) 
stain and immunohistochemical detection of: 
— thioredoxin; ab 86255;
— inducible nitric oxide synthase (iNOS); ab 15323;
— caspase 3; ab 52293.

Immunostaining of hepatic paraffin sections 
for detection of the abnormal immune reaction of 
different primary antibodies was performed using 
streptavidin-biotinylated horseradish peroxidase 
method (Novalink™ Max Polymer Detection System, 
Novocastra, Product No: RE7280-K, Leica Biosystems 
Newcastle Ltd., United Kingdom). The procedure in-
volved the following steps: endogenous peroxidase 
activity was inhibited by 3% H2O2 in distilled water 
for 10 min, and then the sections were washed in 
Tris-buffered saline (TBS) (Sigma, T 5030-100 TAB, 
PH 7.6) twice for 5 min for each wash. Non-specific 
binding of antibodies was blocked by incubation with 
protein block for 10 min (Novocastra). Sections were 
incubated with rabbit polyclonal primary antibodies 
diluted 1:100 for 1 h at room temperature. Sections 
were washed in Tris buffer for twice, each for 5 min, 
then incubated with biotinylated anti-rabbit IgG  
(Novocastra) for 30 min. This was followed by wash-
ing in Tris buffer 2 times, each for 5 min, and then 
incubated with Novolink polymer (Novocastra) for 
30 min. Then the sections were washed in Tris buffer 
2 times, each for 5 min. Peroxidase was detected 
with working solution of diaminobenzidine (DAB) 
substrate (Novocastra) for 10 min. Finally, sections 
were washed in distilled water for 10 min, nuclei were 
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stained with Mayer’s haematoxylin for 5 min and 
sections were mounted in DPX. For negative control 
sections, the same procedure was followed with the 
omission of incubation in primary antibodies [4]. 

Image analysis

High-resolution whole-slide digital scans of all 
stained histological sections were created with Aperio 
ScanScope scanner (Leica Microsystems, Germany). 
The digital slide images were viewed and analysed us-
ing Aperio ImageScope software (Leica Microsystems, 
Germany). To quantify the immunopositive reaction, 
five areas, each with the fixed size of 0.480 mm2,  
were randomly selected per section, and the colour 
deconvolution (colour separation) algorithm (Aperio 
Technologies, Inc.) was set up (by colour calibration) 
to detect and quantify only the brown colour of 
positive staining. The algorithm was then run on 
the selected areas to measure the percentage of the 
colour of interest relative to the total area of analysis. 
All image analysis output results were finally exported 
to Excel sheets and subjected to statistical analysis.

Statistical analysis

Data collected were subjected to statistical analysis 
using IBM SPSS Statistics version 22 software. The 
homogeneity of the obtained numerical data was first 

checked with Levene test and the homogeneity of var-
iance assumption has been met. Analysis of variance 
(ANOVA) was used for an overall comparison between 
the study groups followed by Benferroni post-hoc test 
for pairwise comparisons. Differences were considered 
significant when p was equal to or less than 0.05.

RESULTS
Biochemical results

The results of the present study showed that APAP 
intoxication induced significant increase in the serum 
levels of total bilirubin, ALT and AST compared to the 
control group (p ≤ 0.05) (Tables 1–3). In addition, it 
induced significant increase in the hepatic levels of 
nitric oxide (NO) and MDA compared to the control 
group (p ≤ 0.05) (Tables 4, 5). On the other hand, 
APAP intoxication resulted in significant decrease in 
the serum level of total protein and the hepatic levels 
of GSH and superoxide dismutase (SOD) compared 
to the control group (p ≤ 0.05) (Tables 6–8). Treat-
ment with CURC or THQ, respectively, induced mild 
or moderate alleviation of the changes in most of 
the above-mentioned serum and hepatic biochemical 
parameters (Tables 1–8). However, treatment with 
combination of CURC and THQ successively induced 
marked alleviation of most of these biochemical pa-

rameters (Tables 1–8).

Table 1. Serum levels of total bilirubin (mg/dL) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 1.602 ± 0.018 2.526 ± 0.038 2.284 ± 0.033 1.93 ± 0.053 1.94 ± 0.06

P1 0.000* 0.000* 0.000* 0.000*

P2 0.000* 0.008* 0.000* 0.000*

P3 0.000* 0.008* 0.000* 0.000*

P4 0.000* 0.000* 0.000* 1.000

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text

Table 2. Serum levels of alanine transaminase (U/L) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 49.400 ± 0.574 150.400 ± 0.608 89.220 ± 0.974 68.880 ± 0.795 61.400 ± 0.482

P1 0.000* 0.000* 0.000* 0.000*

P2 0.000* 0.000* 0.000* 0.000*

P3 0.000* 0.000* 0.000* 0.000*

P4 0.000* 0.000* 0.000* 0.000*

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text
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Histopathological results

H&E-stained sections of liver from control rats 
showed normal hepatic architecture with normal 
hepatocytes with intact cell margins and normal nu-

clei, normal central veins with intact endothelium, 
and normal hepatic blood sinusoids (Fig. 1A).

H&E-stained sections of liver from rats after ad-
ministration of APAP showed extensive centrilobular 

Table 3. Serum levels of aspartate transaminase (U/L) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 120.400 ± 0.583 246.000 ± 1.691 189.340 ± 1.055 140.420 ± 1.476 129.760 ± 0.449

P1 0.000* 0.000* 0.000* 0.000*

P2 0.000* 0.000* 0.000* 0.000*

P3 0.000* 0.000* 0.000* 0.000*

P4 0.000* 0.000* 0.000* 0.000*

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text

Table 4. Hepatic nitric oxide (mg/dL) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 0.818 ± 0.227 1.448 ± 0.033 1.414 ± 0.027 1.272 ± 0.022 0.904 ± 0.017

P1 0.000* 0.000* 0.000* 0.229

P2 0.000* 1.000 0.001* 0.000*

P3 0.000* 1.000 0.006* 0.000*

P4 0.000* 0.001* 0.006* 0.000*

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text

Table 5. Hepatic malondialdehyde (mg/dL) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 80.772 ± 0.411 172.398 ± 1.221 128.252 ± 0.819 96.544 ± 0.388 98.442 ± 0.241

P1 0.000* 0.000* 0.000* 0.000*

P2 0.000* 0.000* 0.000* 0.000*

P3 0.000* 0.000* 0.000* 0.000*

P4 0.000* 0.000* 0.000* 0.743

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text

Table 6. Serum levels of total protein (g/dL) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 6.25 ± 0.057 4.23 ± 0.084 5.096 ± 0.09 5.974 ± 0.044 6.252 ± 0.046

P1 0.000* 0.000* 0.087 1.000

P2 0.000* 0.000* 0.000* 0.000*

P3 0.000* 0.000* 0.000* 0.000*

P4 0.087 0.000* 0.000* 0.083

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text
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coagulative necrosis with patches of mononucleated 
inflammatory cellular infiltration, cytoplasmic hy-
pereosinophilia, considerable sinusoidal dilatation 
and congestion, and central vein congestion with 
endothelial disruption. Disappearance of necrotic 
hepatocytes leaving empty areas and small foci of 
mild inflammatory reaction was observed. Necrotic 
hepatocytes revealed nuclear changes including py-
knosis, karyorrhexis, and karyolysis (Fig. 1B).

H&E-stained sections of liver from rats after ad-
ministration of APAP and CURC showed moderate 
liver injury with moderate sinusoidal dilatation and 
congestion (Fig. 1C). H&E-stained sections of liver 
from rats after administration of APAP and THQ 
showed mild liver injury with mild sinusoidal dilata-
tion and congestion (Fig. 1D). H&E-stained sections 
of liver from rats after administration of APAP in 
conjunction with CURC and THQ revealed normal 
lobular architecture and hepatic sinusoids with intact 
hepatocytes (Fig. 1E).

Immunohistochemical study

Liver sections immunostained with anti-thioredox-
in antibody (Table 9) expressed very strong immuno-
reactivity in the cytoplasm of hepatocytes of control 
rats (Fig. 2A). However, cytoplasm of hepatocytes of 
APAP group (Fig. 2B) and APAP-CURC group (Fig. 2C)  

revealed weak immunoreactivity for thioredoxin. 
APAP-THQ showed moderate immunoreactivity for 
thioredoxin in cytoplasm of hepatocytes (Fig. 2D). 
Co-administration of both CURC and THQ after ad-
ministration of APAP (APAP+CURC+THQ group) in-
duced strong immunoreactivity for thioredoxin in 
cytoplasm of hepatocytes (Fig. 2E).

Immunohistochemical staining for iNOS was per-
formed to determine the distribution and intensity of 
iNOS protein expression in the liver sections of rats in 
different groups (Table 10). The control group showed 
no iNOS expression in the hepatocytes (Fig. 3A).  
Liver sections from rats that received APAP showed 
strong iNOS immunoreactivity in the cytoplasm of 
hepatocytes in centrilobular zone and very strong 
iNOS immunoreactivity in all Kupffer cells (Fig. 3B). 
Administration of APAP with CURC induced moder-
ate immunoreactivity in the cytoplasm of hepato-
cytes, while Kupffer cells showed strong iNOS im-
munoreactivity (Fig. 3C). Administration of APAP 
with THQ revealed mild, unevenly distributed iNOS 
immunoreactivity in the cytoplasm of hepatocytes 
with moderate immunoreactivity in Kupffer cells 
(Fig. 3D). On the other hand, co-administration of 
both CURC and THQ after receiving APAP induced 
no cytoplasmic iNOS expression in both hepatocytes 
and Kupffer cells (Fig. 3E).

Table 7. Hepatic reduced glutathione (mg/dL) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 0.460 ± 0.013 0.240 ± 0.019 0.284 ± 0.019 0.357 ± 0.016 0.405 ± 0.006

P1 0.000* 0.000* 0.001* 0.226

P2 0.000* 0.592 0.000* 0.000*

P3 0.000* 0.592 0.037* 0.000*

P4 0.001* 0.000* 0.037* 0.390

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text

Table 8. Hepatic superoxide dismutase (U/mL) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 6.764 ± 0.062 3.816 ± 0.041 4.392 ± 0.143 6.216 ± 0.042 6.49 ± 0.067

P1 0.000* 0.000* 0.001* 0.256

P2 0.000* 0.001* 0.000* 0.000*

P3 0.000* 0.001* 0.000* 0.000*

P4 0.256 0.000* 0.000* 0.256

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text
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Figure 1. Representative photomicrographs of liver sections stained with H&E; A. From control rat showing normal hepatic architecture;  
B. From a rat that received acetaminophen (APAP) showing severe hepatic damage with hepatocellular necrosis, cytoplasmic hypereosinophilia, 
marked sinusoidal dilatation and congestion with disruption of central vein endothelium; C. From a rat that received APAP and curcumin 
(CURC) showing moderate liver injury; D. From a rat that received APAP and thymoquinone (THQ) showing mild liver injury; E. From a rat that 
received APAP and combination of CURC and THQ showing apparently normal liver architecture. Scale bars = 50 µm.

Caspase-immunoreactive cells in liver sections  
(Table 11) from control rats were completely neg-
ative (Fig. 4A). However, caspase immunoreactivity 
was very strongly positive in both cytoplasm and 
nuclei of numerous hepatocytes in liver sections 
from rats that received APAP (Fig. 4B). Admin-
istration of CURC in rats that received APAP in-
duced strong caspase immunoreactivity in both 
cytoplasm and nuclei of many hepatocytes in liver 

sections (Fig. 4C). Administration of THQ in rats 
that received APAP induced moderate caspase im-
munoreactivity in both cytoplasm and nuclei of 
many hepatocytes (Fig. 4D). On the other hand, 
co-administration of both CURC and THQ in rats 
that received APAP markedly reduced caspase im-
munoreactivity to be mild and restricted to the 
cytoplasm of many hepatocytes, while the nuclei 
were not stained (Fig. 4E).
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Figure 2. Representative photomicrographs of thioredoxin-immunostained liver sections; A. From control rat showing very strong immunore-
activity in the cytoplasm of hepatocytes; B. From a rat that received acetaminophen (APAP) showing weak immunoreactivity; C. From  
a rat that received APAP and curcumin (CURC) showing weak immunoreactivity; D. From a rat that received APAP and thymoquinone (THQ) 
showing moderate immunoreactivity; E. From a rat that received APAP and combination of CURC and THQ showing strong immunoreactivity. 
Scale bars = 50 µm.

Table 9. Thioredoxin expression (area %) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 14.094 ± 1.44 0.290 ± 0.025 0.745 ± 0.069 2.193 ± 0.184 6.818 ± 0.306

P1 0.000* 0.000* 0.000* 0.000*

P2 0.000* 1.000 0.557 0.000*

P3 0.000* 1.000 1.000 0.000*

P4 0.000* 0.557 1.000 0.001*

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text
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Figure 3. Representative photomicrographs of inducible nitric oxide synthase (iNOS)-immunostained liver sections; A. From control rat 
showing no iNOS immunoreactivity; B. From a rat that received acetaminophen (APAP) showing strong immunoreactivity in the cytoplasm 
of hepatocytes of the centrilobular zone and very intense immunoreactivity in Kupffer cells; C. From a rat that received APAP and curcumin 
(CURC) showing moderate immunoreactivity in the cytoplasm of hepatocytes and strong immunoreactivity in Kupffer cells; D. From a rat that 
received APAP and thymoquinone (THQ) showing mild unevenly distributed immunoreactivity in the cytoplasm of hepatocytes and moderate 
immunoreactivity in Kupffer cells; E. From a rat that received APAP and combination of CURC and THQ showing immunoreactivity almost  
similar to that of the control section. Scale bars = 50 µm.

Table 10. Inducible nitric oxide synthase expression (area %) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 0.011 ± 0.002 1.075 ± 0.059 0.845 ± 0.071 0.154 ± 0.034 0.066 ± 0.010

P1 0.000* 0.000* 0.336 1.000

P2 0.000* 0.015* 0.000* 0.000*

P3 0.000* 0.015* 0.000* 0.000*

P4 0.336 0.000* 0.000* 1.000

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text
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Figure 4. Representative photomicrographs of caspase-immunostained liver sections; A. From control rat showing no immunoreactivity;  
B. From a rat that received acetaminophen (APAP) showing strong immunoreactivity in both cytoplasm and nuclei of hepatocytes; C. From 
a rat that received APAP and curcumin (CURC) showing strong immunoreactivity in both cytoplasm and nuclei of hepatocytes; D. From a rat 
that received APAP and thymoquinone (THQ) showing moderate immunoreactivity in both cytoplasm and nuclei of hepatocytes; E. From a rat 
that received APAP and combination of CURC and THQ showing mild immunoreactivity mainly in the cytoplasm of hepatocytes. Scale bars = 50 µm.

Table 11. Caspase expression (area %) in the studied groups

Group 1  
(Control)

Group 2  
(APAP)

Group 3 
(APAP+CURC)

Group 4  
(APAP+THQ)

Group 5 
(APAP+CURC+THQ)

Mean ± SE 2.313 ± 0.162 27.13 ± 0.641 17.908 ± 1.071 10.244 ± 0.374 5.583 ± 0.647

P1 0.000* 0.000* 0.000* 0.021*

P2 0.000* 0.000* 0.000* 0.000*

P3 0.000* 0.000* 0.000* 0.000*

P4 0.000* 0.000* 0.000* 0.001*

*Significant difference (p ≤ 0.05); SE — standard error; P1 — versus group 1; P2 — versus group 2; P3 — versus group 3; P4 — versus group 4; other abbreviations — see text
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DISCUSSION
The liver is the largest gland in the human body 

and is a unique organ anatomically located to serve 
its dual role in metabolic and biochemical transfor-
mation reactions. The vulnerability of the liver to 
injury is a function of its anatomical proximity to the 
blood supply and digestive tract and to its ability 
to concentrate and bio-transform xenobiotics [56]. 
Drugs, or their active metabolites, may have a direct 
toxic effect or induce an immune reaction to cellular 
proteins. Direct effects lead to predictable, dose-de-
pendent toxicity [20]. Intoxication by APAP is among 
the most frequent causes of acute liver failure [3] and 
is widely used as a model of liver damage [37, 51, 
74]. Clinically fulminant APAP hepatotoxicity is mani-
fested as confluent centrilobular coagulative necrosis, 
hydropic vacuolisation and macrophage infiltration 
[16, 49, 63, 66]. Our histopathological findings are 
in accordance with the above-mentioned studies.

Prescott [64] reported that a dramatic increase 
in serum ALT and AST levels, mild hyperbilirubine-
mia, and increased prothrombin time resulted from 
the biochemical changes after APAP administration. 
Moreover, the formation of superoxide and NO causes 
hepatotoxicity, which is contributed by hepatic mac-
rophages via different mechanisms [52]. These results 
are in accordance with those of the current work as 
APAP administration induced an elevation of liver bio-
marker enzymes such as ALT and AST, while treatment 
with CURC and/or THQ alleviated these altered param-
eters. Our results are supported by those of Aycan et 
al. [7] who reported that co-administration of APAP 
with THQ led to decrease of serum ALT and AST levels 
compared to those of the APAP treated group. In our 
study, adding CURC augmented the therapeutic effect 
of THQ leading to alleviation of the altered biochemical 
parameters and most of the histopathological changes. 

In this study, histopathological analysis revealed  
a significant liver injury with a high dose of APAP 
where THQ and CURC treatment significantly low-
ered liver injury. Treatment with an overdose of APAP 
in rats was associated with extensive centrilobular 
coagulative necrosis of hepatocytes, destruction of 
endothelium, dilatation of sinusoids with mononu-
clear inflammatory cellular infiltration. The nuclei 
exhibited karyolysis, pyknosis and karyorrhexis. These 
findings were confirmed by the very strong positive 
immunoreaction for caspase in both nuclei and cyto-
plasm of numerous hepatocytes in the liver sections 
of APAP group. These results were similar to those 

observed previously in mice [11, 62] and rats [86]. 
Acetaminophen induced histopathological changes 
starting in the centrilobular zone and increasing in 
severity and distribution over time [67]. These find-
ings were confirmed by the ultrastructural changes 
including proliferation, dilatation, and fragmentation 
of endoplasmic reticulum and Golgi apparatus, in ad-
dition to the appearance of giant mitochondria with 
pleomorphism, paracrystalline inclusions, and dense 
matrix granules [49]. Necrosis may predominantly 
involve a particular liver zone because the enzymes 
involved in drug metabolism are often zonally dis-
tributed or because toxicity depends on the oxygen 
gradient across liver zones. The clinical manifestations 
of necrosis depend on its extent and duration [49]. 
In hepatic venular lesions, there was direct acute  
or chronic injury to the venular endothelium and 
zone 3 hepatocytes, which coincided with Farmer 
and Brind [20] findings.

The generation of NO from L-arginine and molecu-
lar oxygen has been proposed to mediate or modulate 
cellular damage in several organs, including the brain, 
kidneys, and liver [8, 10, 45, 78, 83]. NO is a gaseous 
free radical produced mainly by the NO synthase 
(NOS) family of enzymes. The isoforms of NOS are 
subdivided into three basic categories: endothelial 
NOS, neuronal NOS and iNOS, all of which are en-
coded by separate genes and, therefore, differently 
regulated. Unlike endothelial NOS and neuronal NOS, 
iNOS is not expressed constitutively, but is expressed 
in most cell types given the appropriate stimulatory 
conditions, which include infection, cytokines, me-
chanical injury, and hypoxia [79]. In healthy livers, 
iNOS is not thought to be expressed constitutively. 
However, it is readily upregulated in the liver under 
a number of disease conditions, including ischae-
mia-reperfusion injury, hepatic fibrosis, cirrhosis, and 
regeneration [31, 44, 72, 75, 80, 81]. iNOS is also 
upregulated in vitro in hepatocytes and Kupffer cells 
in response to endotoxins and cytokines alone or in 
combination [13, 15, 21, 24, 58]. Our results showed 
marked increase of iNOS immunoreactivity in APAP 
treated group especially in cells suffering from de-
generative changes. The availability of specific anti-
bodies directed against iNOS has prompted attempts 
to understand their cellular distribution in the liver, 
and how that may affect the pathogenesis of liver 
dysfunction [13, 23, 77]. Gardner et al. [22] reported 
that toxic doses of APAP to rats induced hepatic- iNOS 
in the centrilobular hepatocytes. The development 
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of toxicity is correlated with the expression of iNOS. 
APAP-administration induced profound elevation of 
NO production and oxidative stress, as evidenced 
by increasing lipid peroxidation level, reducing SOD 
activity and depleting intracellular GSH level in liver 
and kidney. Administration of THQ lowered iNOS 
immune reaction but adding THQ to CURC markedly 
depleted most of iNOS immune reaction.

Depletion of reduced glutathione as noticed in our 
study in APAP group caused an increased oxidative 
stress response (decreased detoxification of reactive 
oxygen and nitrogen species), possibly associated with 
alterations in calcium metabolism [29]. Then initiation 
of signal transduction responses and mitochondri-
al permeability transition, with loss of mitochondri-
al membrane potential lead to the loss of ability of 
the hepatocyte mitochondria to produce adenosine 
triphosphate, which is considered the most important 
event causing necrosis [57]. In addition, there are  
a number of modulators of inflammatory responses 
that can alter the severity of liver injury following the 
initiation of toxicity [41, 42]. The interactions of these 
mediators with each other and the interplay of the 
immune cells that produce them will help to elucidate 
the significance of their roles in APAP toxicity [29]. 
Apoptotic responses as seen in many liver cells occur 
in conjunction with these inflammatory events [2, 18]. 
These findings could explain the biochemical results 
of our study especially that related to ROS such as 
MDA and SOD. We found that combination of CURC 
and THQ attenuated oxidative stress by increasing the 
content of hepatic reduced glutathione, leading to the 
reduction in the level of lipid hydroperoxide (MDA) and 
the increase in the level of SOD.

Nagi et al. [59] reported protective effects on 
the prophylactic use of orally administered THQ in 
APAP-induced hepatotoxicity via antioxidant mech-
anisms. Our study is one of the early studies in lit-
erature that investigates the therapeutical effects of 
THQ alone or in combination with CURC after APAP 
overdose exposure. In our study, we have shown 
a remarkable reduction in APAP-induced ALT, AST 
levels, oxidative stress, and tissue damage. THQ (TQ; 
2-isopropyl-5-methyl-1,4-benzoquinone) is the bioac-
tive component of N. sativa seeds and it has various 
pharmacological effects [5]. It is reported that THQ 
possesses strong antioxidant properties and protects 
several organs against oxidative damage induced 
by free radical-generating agents [9, 30, 59]. In this 
study, APAP administration induced significantly high 

MDA levels compared to the control group. Several 
studies showed 40–120% elevated MDA levels com-
pared to the control [59]. This finding correlated with 
the findings of previous studies. Antioxidant enzymes 
like SOD and GSH-Px are important for the elimina-
tion of ROS. It has been suggested that the tissue 
levels of SOD and GSH-Px may reflect ROS levels [9]. 
In addition, MDA levels can be a reliable indicator of 
lipid peroxidation and oxidative stress [73]. Thus, ROS 
can be evaluated indirectly with the determination 
of MDA and the levels of antioxidant enzyme activi-
ties like SOD or GSH-Px in tissue [17]. APAP-induced 
hepatotoxicity resulted in elevated superoxide and 
hydrogen peroxide levels and decreased GSH/GSSG 
ratio [25, 46]. As a consequence of impairment in 
antioxidant defines systems, ROS and lipid peroxida-
tion increase. Papackova et al. [61] demonstrated an 
increase in MDA in APAP-induced hepatic damage. 
In our study, the increase of MDA in liver tissue has 
improved in the rats given APAP as a result of THQ 
and CURC treatment (p = 0.001). This decrease in 
the level of MDA suggests that THQ and CURC may 
be effective in the prevention of lipid peroxidation. 
Similar studies have shown the protective effect of 
THQ in carbon tetrachloride-induced hepatotoxicity 
via the prevention of lipid peroxidation [35]. Another 
interesting finding in our study is the correlated MDA 
levels in both APAP with combination of THQ and CURC 
compared to control group. SOD is the major antiox-
idant enzyme reducing superoxide [65]. We found 
similar SOD levels in the control, THQ, and THQ groups 
indicating that THQ has a protective effect on oxida-
tive stress. In our study, SOD levels in the APAP group 
decreased in association with increased free radicals.

Thioredoxin (Trx) system, consisting of Trx, thiore-
doxin reductase (TrxR) and NADP(H), is present in all 
living cells. TrxR catalyses the reduction of Trx by NADPH. 
Mammalian TrxR is a selenoprotein with ROS scavenging 
ability [85]. Recently, Lu and Holmgren [47] reported 
that inhibition of TrxR results in decreased activity of en-
zymes dependent on thioredoxin and reduced scaveng-
ing of ROS. This can lead to oxidative stress, apoptosis, 
and necrosis [47]. In this study, rats given APAP showed 
marked decrease of Trx immune reaction, which was 
restored by administration of CURC and THQ together.

Clinical implication

The combination of THQ and CURC may be con-
sidered as a safe prophylactic and therapeutic agent 
in APAP toxicity.
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Limitations of the study

The fact that we did neither use different doses 
of APAP nor a recovery group could be regarded as 
a limitation of our study. However, we preferred to 
focus on the toxic dose of the drug.

CONCLUSIONS
We have shown the therapeutic effect of the com-

bination of THQ and CURC in terms of the regulation 
of antioxidant activity in APAP-induced hepatotoxicity. 
Therefore, this combination may be considered as 
a safe prophylactic and therapeutic agent in APAP 
toxicity.
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