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Background: Guinea pig is a species belonging to the Caviidae family of the Ro-
dentia order and is frequently used in experimental studies. Biomedical imaging 
methods are used in the diagnosis and treatment of many diseases in medicine. 
Among these methods, computed tomography (CT) is one of the most important 
imaging methods. In this study, it was aimed to perform the three-dimensional 
(3D) modelling of the CT images, obtained from the humerus and femur in the 
guinea pigs, via the MIMICS programme, and to make some biometric measure-
ments regarding the bones over these models. 
Materials and methods: In the present study, 12 male adult guinea pigs were 
used. The soft tissue on the humerus and femur bones of the guinea pigs was 
removed. After this procedure, CT images at a 0.5 mm-thickness were obtained 
from the animals. The images were recorded in DICOM format. Then, the recon-
struction process was performed from the images by using the 3D modelling 
programme MIMICS® 13.1. On the 3D model of the humerus and femur (right-left), 
volumes, surface areas and lengths as well as other biometric parameters were 
measured separately, and the values were recorded. In addition, measurements 
of the bones were made with the help of a digital calliper. 
Results: Among the parameters obtained from 3D models, a statistical differ-
ence was observed between the right and left cortical thicknesses of the femur 
from the measurements of calliper and the right and left humerus volumes  
(p < 0.05); whereas, no statistical difference was found in other parameters of 
both measurements (p > 0.05). 
Conclusions: It can be stated that CT and 3D modelling can be used for the 
measurement of some parameters in the long bones of the guinea pigs. (Folia 
Morphol 2019; 78, 3: 588–594) 
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INTRODUCTION
Guinea pig is a species belonging to the Caviidae 

family of the Rodentia order [22]. Guinea pigs that 

are frequently used in the experimental studies such 
as immunology, toxicology, pharmacology, and physi-
ology are native to South America and their wild ones 
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are rodents that inhabit in Peru [41]. Their heads are 
quite large and their ears and tails are quite small 
[22]. They are herbivores. Adult guinea pigs have  
a body length of 27–33 cm and weigh of 700–1200 
g [34]. They live for 2–8 years [41].

Bones, which are the passive elements of the 
locomotor system, are composed of organic and inor-
ganic substances. In a guinea pig that has completed 
its growth, 1/3 of the bone is organic substances 
(ossein); whereas, 2/3 is inorganic substances (85% 
— calcium phosphate, 10% — calcium carbonate, 
magnesium phosphate, calcium fluoride). While the 
organic substances provide the elasticity of the bone, 
inorganic substances provide hardness and durability 
to the bone [12, 34]. Appendiculare skeleton is divid-
ed into two parts as bones of thoracic limb and pelvic 
limb. One of the bones of thoracic limb is the humer-
us. The longest bone of the body, which is included 
in the bones of the pelvic limb, is the femur [12, 26].

Morphometry is a research method which exam-
ines the shape differences of the objects and organ-
isms and the correlations of the shape differences 
with other variations. This method is sometimes 
used to analyse the correlation between gender and 
growth factors of the species and sometimes the 
effects of the treatment applied [6, 36]. Convention-
al morphometry is the multiple variance statistical 
analysis that is performed with quantitative (length, 
width, height) variables [16]. Depending on the en-
vironmental components and the genetic structure, 
the differences in the growth of the living being can 
be easily revealed by morphology and morphometric 
studies [39]. 

Biomedical imaging methods are used in the di-
agnosis and treatment of many diseases in medicine  
[13, 40]. The working principle of computed tomography  
(CT), which is one of the medical imaging methods, 
is based on the detection of the non-absorbable part 
of the collimated X-rays passing through any part of 
the body in the tissues by the detectors as well as the 
conversion of the electrical signals into a cross-sec-
tional image by means of computer operations [21]. 
With this method, the structures are displayed in  
a cross-sectional view and the images are much more 
detailed than the X-ray [1]. In recent years, CT has 
played an important role in the anatomical stud-
ies and in the correct diagnosis of the diseases in 
veterinary medicine. In addition to the diagnosis of 
diseases, CT is also used effectively in many biometric 
researches [13, 27, 28].

Three-dimensional (3D) formation of the trans-
versal and longitudinal sections obtained from CT 
and other medical imaging methods is referred as 
reconstruction [2, 15, 32]. Thanks to this method, 
organisation and processing of the 3D information 
obtained by the reconstructions of the first cross-sec-
tional images and enabling them to be presented in 
various shapes have become an acceptable method 
in medical sciences, especially in anatomy, surgical 
and clinical treatment [14, 20, 31, 38]. Anatomical 
details that cannot be observed in 2D images can be 
observed in more details with 3D reconstructed mod-
els. Today, MIMICS is one of the computer software 
used to create 3D models of two-dimensional (2D) 
images that are obtained from CT and magnetic res-
onance imaging methods. This software is a medical 
imaging and control system developed by Materialise 
(Mimics, Materialise Inc., Leuven, Belgium) for the 
3D modelling of anatomical structures. One of the 
most important features that distinguishes MIMICS 
from other 3D modelling software is that it is a seg-
mentation programme using Hounsfield values [3, 15,  
18, 24, 31, 33].

In recent years, various studies have been conduct-
ed on the 3D modelling of anatomical structures in 
the field of veterinary anatomy. In a study conducted 
on the pelvic cavity of New Zealand rabbits, pelvis 
diameters and pelvic inclination were measured on 
a 3D model and evaluated in terms of gender. It 
has been suggested that the models obtained by 
the present study will contribute to the anatomical 
training and also in the diagnosis and treatment of 
diseases and to the knowledge of today’s anatomy 
[30]. In addition, 3D modelling of penile urethra, 
stomach and intestine, respiratory system, paranasal 
sinus and antebrachium was performed in the rabbits  
[9, 10, 19, 29, 31]. In addition, a 3D model of the 
nasal airway was also performed in Nycticebus pyg-
maeus (Slow loris) [11]. 3D modelling of the thick 
filaments of the cardiac muscle in zebrafish, paranasal 
sinuses and diverticulum tubae auditivae in the horses 
and the nephron in the rat was done [4, 5, 8, 17]. As  
a result, it is seen that the 3D modelling method has 
started to be frequently used in the field of veterinary 
anatomy. 

In the literature reviews, it was observed that CT 
and 3D modelling of the femur and humerus, which 
are the long bones of the body, in the guinea pigs, 
and the information regarding the measurements to 
be obtained over these models were limited [35, 40].
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The purpose of the present study is to perform 
the 3D modelling of the CT images obtained from the 
humerus and femur in guinea pigs via the MIMICS 
programme and to calculate some of the biometric 
measurements of the bones such as volume, surface 
area and length over these models.

MATERIALS AND METHODS
In the study, 12 adult male guinea pigs were used. 

The study procedure was approved by the Ethics 
Committee of Selçuk University Faculty of Veterinary 
Medicine (09/03/2017, 2017/26). After the soft tissue 
on the humerus and femoral bones of the guinea 
pigs was removed, morphological differences were 
recorded. After this procedure, CT images were ob-
tained from the animals at 0.5-mm thickness. The 
images were recorded in DICOM format. Then, the 
reconstruction process was performed from the im-
ages transferred to a portable external disk by using 
the MIMICS® 13.1 (The Materialise Group, Leuven, 
Belgium), a 3D modelling programme (Fig. 1). 

In the reconstruction processes, the bone edges 
to be selected by using the “Thresholding” com-
mand from the “Segmentation” menu of MIMICS 
programme were automatically masked. Bones that 
could not be masked were corrected manually by 
the computer mouse by selecting the “Edit mask” 
command. After the manual correction process was 
completed, independent masking was reapplied to 
the selected bone by the “Region Growing” com-
mand. Finally, 3D modelling was performed by the 
“Calculate 3D” command. On the 3D model of the 
humerus and femur (right-left), their volumes, surface 
areas and lengths as well as other biometric parame-
ters were automatically measured separately by using 
the “Info” command and the values were recorded. In 
addition, measurements of the bones were made by 
the help of a digital calliper. The diameter and cortical 
thickness of the humerus and femur were measured 
from the diaphysis section of the bones (Fig. 2).

Measurements performed on the bone (Figs. 3, 4):
 — 1: maximum length of the humerus;
 — 2: maximum length of the femur;
 — 3: proximal width of the humerus;
 — 4: proximal width of the femur;
 — 5: distal width of the humerus;
 — 6: distal width of the femur;
 — 7: cortical thickness of the humerus;
 — 8: cortical thickness of the femur;
 — 9: medullary cavity diameter of the humerus;

Figure 1. Three-dimensional models of the humerus and femur.

Figure 2. Humerus (left) and femur (right).

Figure 3. Measurement points taken from the humerus; 1 — max-
imum length of the humerus; 2 — proximal width of the humerus; 
3 — distal width of the humerus; 4 — diaphysis diameter of the 
humerus (medio-lateral); 5 — diaphysis diameter of the humerus 
(cranio-caudal); 6 — medullary cavity diameter of the humerus  
[6A (mediolateral) + 6B (craniocaudal)/2]; 7 — cortex thickness of the 
humerus [7A (medial) + 7B (lateral) + 7C (caudal) + 7D (cranial)/4].
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 — 10: medullary cavity diameter of the femur; 
 — 11: diaphysis diameter of the humerus;
 — 12: diaphysis diameter of the femur.
On the 3D model, above mentioned parameters 

7, 8, 9, and 10 could not be measured. 
Anatomic terms used in this study were written 

by taking Nomina Anatomica Veterinaria as a refer-
ence [25].

Normality test was applied on the measurements 
taken on the 3D model and the morphometric meas-
urements obtained from the bones via the MIMICS 
programme. While the normally distributed values 
were evaluated by the paired t test, the values that 
did not show normal distribution were evaluated by 
the Wilcoxon test (SPSS 22.0). The value of p < 0.05 
was accepted as the statistically significant limit. 

RESULTS
It was observed that the head of the humerus in the 

proximal extremity section of the shoulder joint with 
the scapula was quite large in guinea pig. Deltoid tu-
berosity was not significant. Radial fossa and olecranon 
fossa were associated with supratrochlear foramen.

It was observed that greater trochanter in the 
proximal extremity section of the femur was higher 
than the head of the femur and lesser trochanter was 
a circular crest. The presence of fovea of the head 
was determined on the articular surface of the fem-
oral head. On the other hand, in the distal extremity 
section, each condyle had articular surfaces specific 
to articulation of the sesamoid bones.

Table 1 shows the measurement values performed 
on the 3D models of the humerus and femur in the 
study. While there was a statistical difference in the 
right and left humeral volume (p = 0.046) from the 
parameters obtained from 3D models, no difference 
was determined in other parameters (p > 0.05).

Table 2 shows measurement values of the humerus 
and femur measured with digital calliper. While a sta-
tistically significant difference was observed between 
the cortical thickness of the femur (p < 0.05), no 
difference was found in other parameters (p > 0.05).

DISCUSSION
While the guinea pig is being fed as an exotic 

animal, it is an animal model that is used in many 
experimental studies in the field of health [41]. The 
humerus and the femur are the two long bones that 
are frequently preferred in morphometric studies 
[23]. CT and 3D modelling are currently used in the 

Figure 4. Measurement points taken from the femur;1 — maximum 
length of the femur; 2 — proximal width of the femur; 3 — distal 
width of the femur; 4 — diaphysis diameter of the femur (medio- 
-lateral); 5 — diaphysis diameter of the femur (cranio-caudal);  
6 — medullary cavity diameter of the femur [6A (mediolateral) + 6B 
(craniocaudal)/2]; 7 — cortex thickness of the femur [7A (medial)  
+ 7B (lateral) + 7C (caudal) + 7D (cranial)/4].

Figure 5. Measurements taken from the three-dimensional models 
of the femur and the humerus; 1 — diaphysis diameter of the femur 
(medio-lateral); 2 — distal width of the femur; 3 — maximum length 
of the femur; 4 — proximal width of the femur; 5 — diaphysis diam-
eter of the humerus; 6 — distal width of the humerus; 7 — maxi-
mum length of the humerus; 8 — proximal width of the humerus.
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diagnosis, and treatment of many diseases [13, 15, 
20]. In addition, bone morphometric measurements 
are made with the help of the digital calliper [23]. In 
the present study, the humerus and femur bones of  
12 adult male guinea pigs were modelled as 3D and 
various parameters were measured. Some morpho-
metric parameters of the same bones that were meas-
ured by using a digital calliper were also evaluated.

In the present study, it was determined that while  
a statistical difference was observed in the left and right 

humeral volume parameters obtained from the data 
of 3D models (right: 447.70; left: 601.85, p = 0.046),  
no difference was observed in other parameters (max-
imum length of the humerus [mm] right: 32.22; left: 
32.15, maximum length of the femur [mm] right: 
38.75; left: 38.61, proximal width of the humerus 
[mm] right: 7.72; left: 7.79, proximal width of the 
femur [mm] right: 10.69; left: 9.74, distal width of the 
humerus [mm] right: 6.28; left: 6.17, distal width of the 
femur [mm] right: 8.16; left: 7.80, diaphysis diameter  

Table 1. Measurement results performed on the three-dimensional models of the humerus and femur in adult male guinea pigs 

Parameters Right Left P

Maximum length of the humerus [mm] 32.22 ± 1.16 32.15 ± 0.85 > 0.05

Maximum length of the femur [mm] 38.75 ±1.65 38.61 ±1.83 > 0.05

Proximal width of humerus [mm] 7.72 ± 0.74 7.79 ± 0.41 > 0.05

Proximal width of the femur [mm] 10.69 ± 0.89 9.74 ± 0.61 > 0.05

Distal width of the humerus [mm] 6.28 ± 0.59 6.17 ± 0.30 > 0.05

Distal width of the femur [mm] 8.16 ± 0.38 7.80 ± 0.41 > 0.05

Diaphysis diameter of humerus (lateral-lateral) [mm] 2.89 ± 0.4 3.10 ± 0.30 > 0.05

Diaphysis diameter of the femur (cranio-caudal) [mm] 4.07 ± 0.33 4.16 ± 0.40 > 0.05

Diaphysis diameter of the femur (lateral-lateral) [mm] 5.03 ± 0.49 5.09 ± 0.55 > 0.05

Diaphysis diameter of the humerus (cranio-caudal) [mm] 3.78 ± 0.40 4.11 ± 0.30 > 0.05

Surface area of the humerus [mm2] 515.74 ± 59.63 597.49 ± 140.24 > 0.05

Surface area of the femur [mm2] 823.88 ± 84.70 802.54 ± 158.88 > 0.05

Volume of the humerus [mm3] 447.70 ± 52.70 601.85 ± 183.50 < 0.046

Volume of the femur [mm3] 770.12 ± 148.18 853.84 ± 85.88 > 0.05

Data are shown as mean ± standard deviation.

Table 2. Morphometric measurement results of the humerus and femur in adult male guinea pigs

Parameters Right Left P

Maximum length of the humerus [mm] 32.92 ± 0.83 (32.78) 32.88 ± 0.63 (32.70) > 0.05

Maximum length of the femur [mm] 39.66 ± 1.47 (39.52) 39.48 ± 1.70 (39.36) > 0.05

Proximal width of the humerus [mm] 8.23 ± 0.52 8.36 ± 0.34 > 0.05

Proximal width of the femur [mm] 10.00 ± 0.30 9.92 ± 0.17 > 0.05

Distal width of the humerus [mm] 7.01 ± 0.52 (6.92) 7.05 ± 0.66 (6.77) > 0.05

Distal width of the femur [mm] 8.40 ± 0.20 (8.34) 8.40 ± 0.40 (8.37) > 0.05

Diaphysis diameter of the humerus (lateral-lateral) [mm] 2.91 ± 0.16 2.95 ± 0.20 > 0.05

Diaphysis diameter of the humerus (cranio-caudal) [mm] 4.11 ± 0.28 4.13 ± 3.23 > 0.05

Diaphysis diameter of the femur (lateral-lateral) [mm] 5.11 ± 0.43 5.22 ± 0.35 > 0.05

Diaphysis diameter of the femur (cranio-caudal) [mm] 3.95 ± 0.30 3.91 ± 0.17 > 0.05

Cortex thickness of the humerus [mm] 0.67 ± 0.09 0.74 ± 0.15 > 0.05

Cortex thickness of the femur [mm] 0.84 ± 0.11 0.76 ± 0.10 < 0.039

Medullary cavity diameter of the humerus [mm] 2.49 ± 0.46 2.30 ± 0.36 > 0.05

Medullary cavity diameter of the femur [mm] 3.36 ± 0.25 3.23 ± 0.35 > 0.05

Data are shown as mean ± standard deviation and (median).
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of the humerus (lateral-lateral) [mm] right: 2.89; left: 
3.10, diaphysis diameter of the humerus (cranio-cau-
dal) [mm] right: 4.07; left: 4.16, diaphysis diameter of 
the femur (lateral-lateral) [mm] right: 5.03; left: 5.09, 
diaphysis diameter of the femur (cranio-caudal) [mm] 
right: 3.78; left: 4.11, surface area of the humerus 
[mm2] right: 515.74; left: 597.49, surface area of the 
femur [mm2] right: 823.88; left: 802.54, volume of 
the femur [mm3] right: 770.12; left: 853.84) (Table 1,  
p > 0.05). In the literature reviews, several studies in 
which CT was used in guinea pigs were accessed [7, 
37, 42], a limited number of studies investigating the 
humerus and femur were accessed. The humerus and 
femur lengths calculated by Witkowska et al. [40] in 
1-year-old guinea pigs via this model were similar to 
the present study. Pazvant [35] stated that the dif-
ference between the maximum lengths of the right 
and left humerus and the anterio-posterior diameter 
of the diaphysis was significant in the measurement 
results of the CT images of the guinea pig. Pazvant 
[35] reported that the difference observed in results of 
the measurement performed between medio-lateral 
and anterio-posterior diameters of the diaphysis of 
the femur on CT images of guinea pig was statisti-
cally significant; whereas, no such difference was 
determined in measurements performed on bone 
and model as a result of the study. The differences 
between the results of the study may be caused by 
the difference in methodology. 

Among the measurements performed by means of 
the digital calliper in the present study, a statistically 
significant difference was found between right (0.84 
mm) and left (0.76 mm) cortical thickness of the femur 
(p < 0.05); whereas, no difference was found in other 
parameters (maximum length of the humerus [mm] 
right: 32.92; left: 32.88, maximum length of the femur 
[mm] right: 39.66; left: 39.48, proximal width of the 
humerus [mm] right: 8.23; left: 8.36, proximal width of 
the femur [mm] right: 10.00; left: 9.92, distal width of 
the humerus [mm] right: 7.01; left: 7.05, distal width of 
the femur [mm] right: 8.40; left: 8.40, diaphysis diameter 
of the humerus (lateral-lateral) [mm] right: 2.91; left: 
2.95, diaphysis diameter of the humerus (cranio-cau-
dal) [mm] right: 4.11; left: 4.13, diaphysis diameter of 
the femur (lateral-lateral) [mm] right: 5.11; left: 5.22, 
diaphysis diameter of the femur (cranio-caudal) [mm] 
right: 3.95; left: 3.91, cortex thickness of the humerus 
[mm] right: 0.67; left: 0.74, medullary cavity diameter 
of the humerus [mm] right: 2.49; left: 2.30, medullary 
cavity diameter of the femur [mm] right: 3.36; left: 3.23)  

(Table 2, p > 0.05). In the studies conducted between 
the sexes in guinea pigs, it has been specified that 
there is no difference in the maximum length of the 
right and left humerus on the direct osteometric and 
radiography images and the right and left values in all 
measurements of the femur [34, 35] and the femur and 
humerus lengths in both genders of nandrolone-ad-
ministered rats [23].

CONCLUSIONS
In conclusion, it was determined that among the 

data obtained from 3D modelling, there was a statis-
tical difference in the right and left humeral volume 
parameter and also in the right and left cortical thick-
ness from the measurements performed by the digital 
calliper; whereas, no statistical difference was ob-
served in other parameters. It can be asserted that CT 
can be used in the modelling of both bones; however, 
3D modelling in some parameters in small bones and 
micro CT in measurements may be more beneficial.  
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