Evaluation of antioxidant and anti-lipid peroxidation potentials of Nigella sativa and onion extract on nicotine-induced lung damage

Author: Sherif Mohamed Zaki

DOI: 10.5603/FM.a2018.0117

Article type: ORIGINAL ARTICLES

Submitted: 2018-11-17

Accepted: 2018-12-15

Published online: 2018-12-20

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited.
Articles in "Folia Morphologica" are listed in PubMed.
Evaluation of antioxidant and anti-lipid peroxidation potentials of Nigella sativa and onion extract on nicotine-induced lung damage
Short running title: Nicotine-induced lung damage

Sherif Mohamed Zaki
Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt

Address for correspondence: Sherif Mohamed Zaki, Faculty of Medicine, University of Cairo, Cairo, Egypt, Current address: Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia, e-mail: zakysherif1@gmail.com

Abstract
Background and aim: The present work aimed to compare the protective effect of Nigella sativa (NS) and onion extract on the nicotine-induced lung damage in rats. The antioxidant and anti-lipid peroxidation potentials of both agents on nicotine-induced lung damage were studied.

Materials and methods: Thirty-six Sprague-Dawley albino rats, treated for 18 weeks, were divided into six groups: one negative control group, two positive control groups (oral onion and oral NS), nicotine-treated group, onion extract-treated group (concomitant nicotine and onion extract) and NS-treated group (concomitant nicotine and NS oil). The assessment of lung structure was based on hematoxylin and eosin and transmission electron microscopy. Lung malondialdehyde (MDA), superoxide dismutase activity (SOD), catalase (CAT), lung GSH, and epithelial lining fluid GSH (ELF GSH) were used for assessment of the antioxidant and anti-lipid peroxidation potentials of NS and onion extract.

Results: The lung of the nicotine-treated group exhibited emphysematous air spaces, collapsed corrugated alveoli with ruptured interalveolar septa in some specimen and thickened septa in the others, massive congestion, extravasation of RBCs, inflammatory cellular infiltration and fluid exudate. Much improvement was observed in the onion-treated group despite the presence of residual pathological affection. The lung in the NS-treated group
showed the nearly normal architecture with slight congestion. Administration of nicotine promoted lipid peroxidation (elevation of MDA) and decreased the level of the antioxidant markers (SOD, CAT, lung GSH and ELF GSH). With the use of onion extract and NS, the level of MDA decreased by 17.85% and 35.71% while the levels of SOD, CAT, GSH, and ELF GSH increased. The increase was more prominent in the NS-treated group. The levels in the NS-treated group reached nearly the level markers of the control group.

Conclusions: NS and onion extract attenuate the pathological effect of nicotine in the lung rats through antioxidative and anti-lipid peroxidative mechanisms with higher protection to NS.

Key words: Nigella sativa; onion extract; nicotine; lung

INTRODUCTION

Nicotine is a naturally occurring alkaloid found in a wide variety of plants [45]. Its chief source of contact is through the use of tobacco, nicotine-containing gum and nicotine replacement therapies such as transdermal nicotine patches [45]. Nicotine has dose-related harmful pulmonary effects that result in damage to the lung endothelial barrier, acute lung inflammation, and reduced lung endothelial cell proliferation [37]. Some researchers detected emphysematous changes with pulmonary congestion, edema, and hemorrhage into alveoli and interstitial areas with the use of nicotine in rats [11]. In addition, nicotine causes lung cancer as well as obstructive pulmonary diseases [13].

The mechanism of nicotine by which it induces such damages is not completely delineated. Considerable evidence points to the involvement of oxidative stress [45]. Nicotine disrupts the antioxidant defense mechanisms by decreasing levels of glutathione (GSH) and superoxide dismutase (SOD) and by changing the balance between antioxidant capacity and oxidative stress-induced free radicals [41,46]. In addition, nicotine stimulates lipid peroxidation by increasing the malondialdehyde (MDA) and lactate dehydrogenase [46].

Nigella sativa (NS) is an annual flowering plant, native to Asia and the Middle East. The seed oil of NS is rich in polyphenols, tocopherols, protein, carbohydrates, vegetable oil and omega-3 and omega-6 fatty acids. The NS seed exhibits analgesic, antibacterial, anti-inflammatory, and antineoplastic activity [3]. In addition, NS oil was shown to have an antioxidant effect [18]. The anti-inflammatory effect of NS is comparable to 100 mg/kg aspirin [2]. The protective effects of NS oil in different tissues against toxic agents in animal studies have been proved [42].
Onion (Allium cepa Linn) is an important allium species commonly used as ingredients in many dishes for flavor and taste enhancement [32]. Onion is rich in two significant bioactive compounds; organosulfur compounds and flavonoids [36, 40]. It possesses antioxidant, anti-inflammatory, and antimicrobial properties [15]. Its role in lowering the lipid peroxide levels had been reported by some researchers [33] but denied by others [25].

Although many researchers studied the protective effect of NS oil on lung damage-induced by many harmful agents [43], up to our knowledge, no researchers studied the protective potential of NS oil on lung damage induced by nicotine. Moreover, few researchers were concerned by the protective of onion oil on lung damage induced by nicotine [19, 20]. So, the present work aimed to compare the protective effect of NS and onion extract on nicotine-induced lung damage in rats. Furthermore, the antioxidant and anti-lipid peroxidation potentials of both agents on nicotine-induced lung damage were studied.

MATERIALS AND METHODS

Chemical

Nicotine hydrogen bitartrate (Sigma Aldrich Co., St. Louis, Mo) was dissolved in 0.9% saline and neutralized to PH 7.2 with NaOH. The treatment was given at a dose of 2.5 mg/kg subcutaneously once daily for 5 days per week/18 weeks [11]. Selection of dose of nicotine was constructed on the previous studies and doses commonly used by other laboratories [11] and the selection of time schedule was based on that more than 20 days of nicotine injection leads to oxidative stress and tissue injury [38,39].

Red onion was used because of its reported high antioxidant potentials [32]. It was dressed and frozen (4°C). 100 ml of distilled water per 100 g of onion were added and crushed in a mixing machine. The resultant mixture was squeezed and filtered [32]. The onion extract was given orally once/day in a dose of 50 mg/Kg [44]. This dose is nontoxic and has few ill effects [44].

The NS oil was given at a daily dose of 0.1 g/kg orally. The dosage was chosen based on human NS oil consumption which is equal to 2 g/day; 0.1 g/kg/day was accepted as the corresponding dose in the rat [12].

All chemicals were purchased from Cap Pharma Company, Egypt.

Animals

Thirty-six Sprague-Dawley adult male albino rats were acclimatized in the laboratory for a period of two weeks before carrying out the experiment. The sample size was based...
according to the resource equation method [8, 14]. The rats were kept in cages with a temperature around \((26^\circ \pm 2^\circ)\) with 12 hours light and 12 hours dark cycle.

The rats were observed daily for signs of morbidity and mortality. The general toxicological data were recorded including the motility, food and water consumption, health status and body weight gain. The study was approved by the Ethics Committee, Faculty of Medicine, Cairo University (321/2018). The study was performed according to the ethical standards of the National Institutes of Health guide for the care and use of Laboratory Animals (8th edition, revised in 2011).

Experimental design

At the beginning of the study, the rats’ age was approximately 7 months. They were divided into 6 groups, each one consists of 6 rats: one negative control group, two positive control groups (oral onion and oral NS), nicotine-treated group, onion extract-treated group (concomitant nicotine and onion extract) and NS-treated group (concomitant nicotine and NS oil). The antioxidants of the positive control groups was given orally via a syringe with a gavage needle according to the drug administration protocol. In the last two groups, the antioxidants were administered orally following the nicotine injection. All rats were sacrificed after 18 weeks.

Tissue sampling

The lung was dissected and fixed immediately in 10\% formalin saline. To randomize selection, the entire lung was cut starting at the superior border, every tenth section (5 \(\mu\)m thick) was put aside for staining.

Preparation of tissue extracts

A portion of lungs was homogenized in 10 volumes (1:10; w/v) of ice-cold 10 mM phosphate buffered saline (PBS, pH 7.4) in an Ultra Turrax tissue homogenizer for 30 seconds. Homogenates were centrifuged at 10,000 rpm for 10 min at 4 \(^\circ\)C. The supernatant was pipetted into clean centrifuge tubes and stored in aliquots (-80 \(^\circ\)C) until analysis [11].

Light microscopic study

The lung sections were stained with hematoxylin and eosin (H&E) stain [5]. The stained sections were examined and photographed using a Canon digital camera (Canon, Tokyo, Japan) connected to an IBM computer system.
Transmission electron microscopic study

Small pieces of the lung from each rat were fixed in 2% paraformaldehyde and 2% glutaraldehyde solution in 0.1 mol/l PBS pH 7.2 and kept in the refrigerator overnight, rinsed in 0.1 mol/l PBS and post fixed in phosphate-buffered 1% osmium tetroxide. Fixation was followed by dehydration and embedding in epoxy resins. Semithin cross-sections were stained with 1% toluidine blue. Ultrathin sections (50-60 nm) were stained with uranyl acetate and lead citrate. These sections were examined and photographed using a Jeom-1400 transmission electron microscope (JEOL Ltd./Japan a Joel).

Oxidative/antioxidative markers

Malondialdehyde (MDA), a marker for lipid peroxidation, was measured by monitoring thiobarbituric reactive substances (TBARS) formation. The concentration of MDA was calculated and expressed in nanomoles per milligram of protein.

Superoxide dismutase activity (SOD) was determined at room temperature according to the modified Misra and Fridovich’s method [31].

The lung catalase (CAT) activity was evaluated at room temperature according to the Aebi’s method [1]. One unit of CAT activity is equal to the μmoles of H₂O₂ degraded per minute per milligram of protein (μmol/H₂O₂ utilized/min/mg protein).

Glutathione (GSH) was measured spectrophotometrically in the bronchoalveolar lavage fluid (BALF) and lung tissue [34]. The concentration of the lung GSH was calculated using the standard curve and expressed per mg of protein. The level of epithelial lining fluid GSH (ELF GSH) was expressed µM.

The protein concentration in the lung homogenate was measured by Bradford’s method using bovine serum albumin as standard [7].

Statistical analysis

Statistical analysis was performed using statistical package for the social sciences (SPSS) version 21.0 (IBM Corporation, Somers, NY, USA) statistical software. Data were expressed as means ± standard deviation (SD). Statistical evaluation was done using one-way analysis of variance (ANOVA) followed by Bonferroni pairwise comparisons. Significance was considered when the p-value was less than 0.05.
The percentage of increase or decrease (difference) of all study parameters were calculated with the following formula: Percentage of difference = (Mean difference value between two groups)/ (Value of the compared group) x100.

RESULTS:

General characteristic data of the rats (Table 1)

No mortalities were detected in the different studied groups. The motility, food and water consumption and health status were good.

The body weight at the beginning of the study was 220.0±5.4 g. At the end of the study, the animals of the different studied groups gained weight. The body weight in the nicotine-treated group was 15% less than the weight of the control group. More weight gain was observed in the onion extract and NS-treated groups.

The lung protein decreased in the nicotine group by 11.7% in relation to that of the control group. Higher elevation was observed with the use of onion extract and NS (3.3% and 10% higher than that of the nicotine-treated group).

Levels of lipid peroxidation (Table 2)

Administration of nicotine in the study promoted lipid peroxidation. The level of MDA in lung homogenates was significantly increased in the nicotine group by 86.66% compared with the rate of the control groups. With the use of onion extract and NS, the level of MDA decreased by 17.85% and 35.71% compared with the nicotine group.

Levels of antioxidant markers (Table 2)

Administration of nicotine decreased the level of the antioxidant markers. Compared to the control rats, nicotine-treated animals showed a significant decrease in the levels of SOD and CAT by 58.33 % and 26.41 % respectively. With the use of onion extract and NS, the level of SOD increased by 57.14% and 122%, and the level of CAT increased by 16 % and 29.48 % respectively compared with the level of the nicotine group. The increase was more prominent in the NS-treated group. The level of both markers in the NS-treated group reached nearly the level markers of the control group.

Furthermore, compared to the control rats, the nicotine-treated animals showed a significantly lower level (53.15% and 44.44%) of the lung GSH and ELF GSH. With the use of onion extract and NS, the level of the lung GSH increased by 49.33 % and 91.11 %, and the level of the ELF GSH increased by 37.84 % and 69.23% respectively compared with their
levels of the nicotine group. The level of both markers in the NS-treated group reached nearly the level markers of the control groups.

The general structure of the lung as shown by H &E staining

The lung of the control groups exhibited the normal histological architecture (Fig. 1a, b).

The lung in the nicotine-treated group exhibited emphysematous air spaces, collapsed corrugated alveoli with ruptured interalveolar septa in some specimen (4/6) and thickened septa in the others (2/6) (Fig. 1 c, d). In addition, massive congestion, extravasation of RBCs, inflammatory cellular infiltration and fluid exudate (3/6) were seen in this group (Fig. 2 a-d).

Much improvement was observed in the onion extract-treated group despite the presence of residual pathological nicotine affection of the lung such as thickened interalveolar septa, congested capillaries and massive foamy macrophages (2/6) (Fig. 3 a, b). The lung in the NS-treated group showed the nearly normal architecture with slight congestion (5/6) (Fig. 3 c, d).

Semithin and ultrathin structure of the lung

The semithin sections in the lung of the control group displayed the normal architecture (Fig 4 a). Mast cells, plasma cells, and fluid exudate were detected in the nicotine-treated group (2/6) (Fig. 4 b). Foamy macrophages (1/6) were seen in the onion extract-treated group. Nearly normal lung architecture (5/6) was observed in the NT-treated group.

The ultrathin sections in the lung of the nicotine-treated group exhibited the presence of interalveolar exudate, multiple pneumocytes II, fibroblasts, macrophages and collagen (5/6) (Fig. 5 a, b). Many affections of the lung of the onion extract-treated group such as the presence of collagen and mast cells were detected (3/6) (Fig. 5 c). The NS-treated group showed collagen with few lysosomes and macrophages (1/6) (Fig. 5 d).

DISCUSSION

The body weight in the nicotine-treated group was significantly lower than the weight of the control group. More weight gain was observed in the onion extract and NS-treated groups; however, both groups did not reach the weight of the control group. The weight-reducing effect of smoking is well documented which may be attributed to nicotine’s appetite suppression property and/or its metabolism stimulation property with more caloric burn [9].
Chronic nicotine administration has a deleterious effect on the lung. The emphysema with collapsed corrugated accompanied the nicotine administration were the consequences of the observed alveolar damage [11]. The congestion, hemorrhage, and edema were the consequences of the increased vascular permeability, pulmonary microvascular leakage and the loss of the pulmonary capillary endothelium [11]. Such findings could indicate damage to the cellular clearance systems and pulmonary lymphatic [11]. In addition, interstitial inflammatory cellular infiltration in the nicotine-treated group was attributed to nicotine triggering inflammatory cascade in the airway epithelium ensuing the production of numerous strong cytokines and chemokines, with the recruitment of neutrophils and macrophages to the airways [24].

The previous histopathological changes with the increased level of the lipid peroxidation (oxidant; MDA) and the decreased levels of the pulmonary antioxidants reflect an oxidative stress. Oxidative stress is defined as the shift in the balance between oxidants and antioxidants in the favor of oxidants [6]. The chronic exposure to nicotine (18 weeks) besides its high concentrations (2.5 mg/kg) were the two inductive factors causing such oxidative stress [16, 38-39]. Low concentration of nicotine (10 µM) is actually preventive of oxidative stress as the nicotine at such dose inhibits the H2O2 induced lipid peroxidation [16].

The resultant oxidative stress in the lung generates oxygen free radical (ROS) which has the ability to react with numerous biomolecules in the cell, including proteins, lipids, and nucleic acids, which caused oxidative damage and eventually lead to cell death [29]. Such destructive species can be scavenged by the host antioxidant defense system. The first antioxidant defense is SOD which catalyzes the dismutation of O2· to H2O2 and O2 [23]. The second antioxidant defense is CAT which scavenges H2O2 generated by SOD and converts it to H2O and O2 [35]. GSH is an important antioxidant defense that offers protection against free radicals, peroxides and toxic compounds [30]. Chronic nicotine administration decreased the activities of the free radical scavenging enzymes SOD, CAT, and GSH which may be due to the enhanced utilization of these antioxidants during detoxification of nicotine. This results in increased generation of the O2· and H2O2 which in turn results in generation of OH· [17]. The generation of OH· participates many toxic reactions [17].

Enhanced lipid peroxidation (increased MDA level) was observed in the nicotine-treated group. The higher level of lipid peroxidation products in the lung of the nicotine-treated rats may be due to nicotine ROS [11]. The increased lipid peroxidation led to a disruption of the pulmonary cell membranes’ integrity and to the cytoplasmic enzyme’s
leakage [11]. Lipid peroxidation can be used as an index for measuring the cell membrane damage that occurs in because of ROS [22].

Much improvement of the structure and ultrastructure of the lung was observed in the onion extract-treated group despite the presence of residual pathological affection. In contrary, the lung of the NS-treated group showed nearly normal architecture.

The first mechanism through which the onion extract and NS protected the lung against the destructive effect of nicotine was through suppression of the lipid peroxidation. Compared to the nicotine group, the level of lung MDA significantly decreased in the onion extract group with double the descent in the NS-treated group. The anti-lipid peroxidation role of NS is attributed to thymoquinone (TQ) which is the main component of the NS oil [27]. Many researchers proved the anti-lipid peroxidation role of TQ. TQ has a protective effect on the membrane lipid peroxidation in hepatocytes [27] and on the lipid peroxidation during ischemia-reperfusion injury in the rat hippocampus [21]. In addition, TQ decreased the hepatic and the erythrocyte lipid peroxidation [18]. On the other hand, concerning the lipid peroxidation role of onion extract, controversy in the literature was observed. The reducing lipid peroxidation effect of the onion extract against Cd-induced testicular oxidative damage in rats was proved by some researchers (10). Park et al. reported that onion supplementation is valuable for lowering lipid peroxide levels to the aged rats [33]. However, in this study, the onion peel extract supplementation had no effect on lipid peroxidation parameters or inhibitory capacity against leukocyte DNA damage [33].

The second mechanism through which the onion extract and NS protected the lung against the destructive effect of nicotine was through the antioxidant mechanism. All the antioxidant enzymes used in our study (SOD, CAT, lung GSH and ELF GSH) increased in the onion extract and NS-treated groups with the highest level was in the NS-treated group. The antioxidant role of NS is also attributed to TQ [4]. The anti-oxidant TQ might be attributed to its scavenging activity against several ROS including O₂⁻, OH⁻ and O₁ [28]. In addition, many researchers proved the protective effect of TQ on numerous organs against oxidative damage induced by a diversity of free radical-generating agents [10]. Similarly, the antioxidative effect of the onion extract was proved in many works of literature [26] and against Cd-induced testicular oxidative damage in rats [32].

CONCLUSIONS
In conclusion, NS and onion extract attenuate the pathological effect of nicotine in the lung rats through antioxidative and anti-lipid peroxidative mechanisms with higher protection to NS.

Conflicts of interest: none

References

Table (1): The body weight and protein of lung in the studied groups at the end of the study

<table>
<thead>
<tr>
<th>Group</th>
<th>BW (g) Mean ±SD</th>
<th>Protein (g/100 g of lung) Mean ±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>280.0±7.9</td>
<td>6.8±0.2</td>
</tr>
<tr>
<td>Nicotine</td>
<td>237.0±5.7*#$</td>
<td>6.0±0.2* $</td>
</tr>
<tr>
<td>Nicotine-onion</td>
<td>257.2±7.0%*%</td>
<td>6.2±0.2%* $</td>
</tr>
<tr>
<td>Nicotine-NS</td>
<td>270.0±7.9%*%</td>
<td>6.6±0.1%*a</td>
</tr>
</tbody>
</table>

* significant in relation to the control group
significant in relation to the nicotine-onion group
$ significant in relation to the nicotine-NS group
% significant in relation to the nicotine group
<table>
<thead>
<tr>
<th>Group</th>
<th>MDA (nmol/mg protein)</th>
<th>SOD (U/mg protein)</th>
<th>CAT (µmol/H2O2 utilized/min/mg protein)</th>
<th>ELF GSH (µM)</th>
<th>Lung GSH (nmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Mean ±SD</td>
<td>0.15±0.01</td>
<td>16.8±1.5</td>
<td>42.4±2.1</td>
<td>96.0±9.6</td>
<td>117.0±12.0</td>
</tr>
<tr>
<td>Nicotine Mean ±SD</td>
<td>0.28±0.02*</td>
<td>7.0±1.6</td>
<td>31.2±1.9</td>
<td>45.0±7.9</td>
<td>65.0±7.9</td>
</tr>
<tr>
<td>Nicotine-onion Mean ±SD</td>
<td>0.23±0.02%</td>
<td>11.0±1.61</td>
<td>36.2±1.3</td>
<td>67.2±5.6</td>
<td>89.6±7.3</td>
</tr>
<tr>
<td>Nicotine-NS Mean ±SD</td>
<td>0.18±0.02%</td>
<td>15.6±1.5%</td>
<td>40.4±1.1%</td>
<td>86.0±4.2%</td>
<td>110.0±7.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Versus control</th>
<th>Versus nicotine</th>
<th>Versus nicotine-onion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versus control</td>
<td>0.060</td>
<td>0.001</td>
<td>0.446</td>
</tr>
<tr>
<td>Versus nicotine</td>
<td>0.000*</td>
<td>0.000*</td>
<td>0.000*</td>
</tr>
<tr>
<td>Versus nicotine-onion</td>
<td>0.000*</td>
<td>0.001*</td>
<td>0.006*</td>
</tr>
</tbody>
</table>

Table (2): Lipid peroxidation, oxidative/antioxidative markers in the studied groups

* significant in relation to the control group
significant in relation to the nicotine-onion group
$ significant in relation to the nicotine-NS group
% significant in relation to the nicotine group
LEGENDS TO THE FIGURES

Figure 1. Lung morphology in the control and nicotine-treated groups (Hematoxylin-eosin). (a, b) control rats: alveolar sac (AS), respiratory bronchiole (RB), terminal bronchiole (TB) and alveoli (A) (×200 and 400 respectively). (c, d) Nicotine-treated group (×100); (e) Emphysematous air spaces with ruptured interalveolar septa. (d) Emphysematous air spaces (encircled area), collapsed corrugated alveoli (boxed area) and thickened septa (T).

Figure 2. Lung morphology in the nicotine-treated group (Hematoxylin-eosin). (a) Massive congestion (C) with emphysematous air spaces (E) (Hx. & E.; ×200). (b) Disrupted bronchiole (B), extravasated RBCs (arrowheads) and inflammatory cells (arrows) (×400). (c) Fluid exudate (E) and macrophages (arrows) (×1000). (d) Increased number of pneumocyte II (arrows), congested capillaries (C) and fluid exudate (E) (×100).

Figure 3. Lung morphology in the onion extract and nigella-treated groups (Hematoxylin-eosin). (a, b) Onion extract-treated group. (a) Thickened interalveolar septa (*) with congested capillaries (arrows) (×200). (b) Massive foamy macrophages (encircle) within thickened septa (×400). (c, d) Nigella-treated group. (c) Normal lung architecture with slight congestion (×100). (d) Normal lung architecture with slight congestion (arrowhead) and pneumocyte II (arrow) (×400).

Figure 4. Semithin sections in the lung of the different treated groups (Toluidine blue; ×1000). (a) Control group: normal lung architecture. Note the alveoli (A). (b) Nicotine-treated group: mast cells (M), plasma cells (P) and fluid exudate (E). (c) Onion-treated group: foamy macrophages (FM). (d) Nigella-treated group: Normal lung architecture with extravasated RBCs (arrows) and exudate (E).

Figure 5: Ultrathin in the lung of the different treated groups. (a, b) Nicotine-treated group: Pneumocyte II (P2) with lamellar bodies (LB), exudate (E) in interalveolar spaces, collagen (C), a fibroblast (F) and a macrophage (M) (×6300). (c) Onion-treated group: collagen (C), lamellar bodies (LB) in a pneumocyte II (P2) and a mast cell (MC) (×5000). (d) Nigella-treated group: collagen (C), lysosomes (L) in a macrophage (M) (×5000).