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The aim of this paper is to present a novel algorithm for learning and forgetting 
within a very simplified, biologically derived model of the neuron, called firing cell 
(FC). FC includes the properties: (a) delay and decay of postsynaptic potentials, 
(b) modification of internal weights due to propagation of postsynaptic potentials 
through the dendrite, (c) modification of properties of the analog weight memory 
for each input due to a pattern of long-term synaptic potentiation. The FC model 
could be used in one of the three forms: excitatory, inhibitory, or receptory (gan-
glion cell). The computer simulations showed that FC precisely performs the time 
integration and coincidence detection for incoming spike trains on all inputs. Any 
modification of the initial values (internal parameters) or inputs patterns caused 
the following changes of the interspike intervals time series on the output, even 
for the 10 s or 20 s real time course simulations. It is the basic evidence that the 
FC model has chaotic dynamical properties. The second goal is the presentation of 
various nonlinear methods for analysis of a biological time series. (Folia Morphol 
2018; 77, 2: 221–233)

Key words: spiking neuron model, learning, long-term synaptic 
potentiation, forgetting, nonlinear time series analysis

INTRODUCTION
Learning, memory and forgetting are the essential 

properties of even the most primitive nervous system 
or brain. In humans many organic or psychiatric dis-
eases strongly impair these functions (i.e. Alzheimer 
disease, schizophrenia, epilepsy, even stress) [16, 17, 
19, 23, 34, 50]. And we have as yet no satisfactory ex-
planations for the basic mechanisms of these mental 
disorders. In many cases, additional knowledge could 
also emerge from computational models of single 
neurons or particular brain networks.

In neural networks, on a high level of biological real-
ism, computation within the timing of individual spikes 
(action potentials) must be used. After the arrival of an 
action potential at the excitatory synapse we have an 

embarrassment of riches in which synaptic plasticity 
(inputs weights changes is the technical term) does 
occur. The biological neurons such as pyramidal cells 
in the hippocampus or cortex show various types of 
long-term synaptic potentiation (LTP) or depression (LTD) 
with presumably the dendritic location of their mecha-
nisms throughout the N-methyl-D-aspartate (NMDA) 
glutamate receptors [5, 6, 35, 44]. Currently available 
detailed simulators (Neuron, Genesis) of Hodgkin-Huxley 
neurons allow the maintenance of circuits consisting of 
thousands or even millions of cells, but in the case of 
simulations of large neural networks, the complexity of 
the neurons mathematical description with differen-
tial equations requires computational power which is 
hardly available [9, 25, 54]. For example Hendrickson 
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et al. [24] use, for the simulation of more than one mil-
lion cells of the dentate gyrus of the rat brain, a com-
puter cluster with a total of 4,040 processor cores and  
a maximum theoretical performance of 38.82 teraflops.

Simplified models of the integrate-and-fire (IF) 
type, on the other hand, do not cover the main prop-
erties of dendritic processes [11, 21, 27]. The IF model 
provides a caricature of the capacitive nature of the 
cell membrane at the expense of a detailed model of 
the refractory process. The IF model satisfies a current 
balance equation together with the condition that 
whenever the neuron reaches a threshold, it fires and 
the membrane potential is immediately reset to some 
reset potential, Vreset.

The detailed models of plasticity processes are not 
suitable for building large scale networks, so the most 
used rule for such models is the spike time dependent 
plasticity (STDP) sometimes completed with details of 
intracellular calcium turnover [8, 21, 42]. The STDP 
algorithm is a pure phenomenological approach, it 
could be easily used within computer simulations or 
complicated electronic circuits but, the living nervous 
cells solve this problem in another way, mainly by LTP/
LTD mechanisms. Recently a tagging procedure for 
LTP/LTD mechanisms as well as a probabilistic spiking 
neuron model approach were described [8, 13, 29]. 

We have proposed that in neural simulations the 
computationally-expensive model of ionic channels’ 
conductances can be replaced with a phenomenological 
model based on a set of shift registers in such a way 
that no essential output properties are lost because of 
such a replacement [3, 4, 22]. Thus the communication 
between particular neurons in the modelled network 
could be purely digital within zero-one courses and uses 
the timing of the output spikes to transmit information 
with only restraint being refraction time. The model also 
avoids the necessity of solving of differential equations. 

What should be the reason for any biologically 
plausible synaptic plasticity mechanism or algorithm? 
Surely, the increase of particular synaptic weights 
must be rapid enough for survival and the depo-
tentiation significantly slower. The algorithm newly 
employed in the firing cell (FC) neuron model covers 
those conditions. Real cognition requires the ability 
to learn sequences of patterns, and the most recently 
learned pattern does not erase the previously learned 
ones. Thus the spiking neural networks should have 
mechanisms to avoid that catastrophic interference, 
but some degree of forgetting should be always ac-
tive, in other cases the possibility of significant syn-

aptic weights changes rapidly decreases. So, we will 
also present the influence of various forgetting quotes 
(forgetting coefficient [FQ]) on the complex dynamic 
behaviour of FC model after the initiation of LTP.

Despite of all the complex mechanisms in a living 
nervous cell, the working result is always an action 
potential fired at a precise time depending on the in-
put spike trains pattern. And if any, even very simple, 
models show efficient properties of time integration, 
coincidence detection and synaptic plasticity for inputs 
patterns, it should be useful for future challenges in 
neural computation. 

To move further in understanding of how an in-
credibly sophisticated conglomerate such as the brain 
per se functions dynamically, at least, it is imperative 
to know the dynamics of its’ elements — neurons. 
Having an exhaustive knowledge of the behaviours of 
neurons should help us to deepen our understanding 
of the synergy of cooperative behaviours of popula-
tions of neurons, neuronal networks, in this bottom-
up approach [2, 39–41]. Dynamically, neurons are 
categorised and characterised by kinds and shapes 
of membrane potential oscillations. Waveforms of 
such oscillations have been proved to be useful for 
prediction and identification of various neurological 
deceases such as Parkinson’s disease or epilepsy [55]. 
A neuron is often viewed as a dynamic system [26], 
which can be evaluated by a broad family of nonlinear 
methods to describe neuronal activity over time. But 
what parameters should be evaluated? In mature 
nervous cells, the intrinsic parameters and synapses 
are well established, thus only the input and output 
spike trains patterns (inter spike intervals [ISI] time 
series) and in some diseases the synapses themselves 
undergo changes. So, we will put forward the ques-
tion of how the elevated and memorised weight of 
particular inputs can change the output spike train. 
Surprisingly we are not able to find any data for such 
simulations in the literature, so a comparison with 
the most popular models such as integrate and fire, 
leaky integrate and fire, or neuron simulator is dif-
ficult. In this paper we will present a detailed formal 
and mathematical description of the FC model and 
some new methods of nonlinear analysis employed 
for the evaluation of simulations results.

MATERIALS AND METHODS
Mathematical presentation of the firing cell

For this presentation of the FC neuron model we 
adopted the general schema of hippocampal py-
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ramidal cell. Most of excitatory synapses are located 
among the long apical dendrite; the inhibitory syn-
apses form mainly a “basket” around the cell body. 
The dendrite is modelled within a course of com-
partments and each has an excitatory or inhibitory 
synapse. The programme clock step of the presented 
model equals 0.5 ms of the simulated real time. First 
we create tables of shift registers; they form an array 
of looking up buffer tables. For excitatory inputs (glu-
tamate receptors): AMPA – E (k,i), NMDA – M (k,i), and 
for inhibitory inputs (GABA receptors): I(k,i) whereas 
“k” is the number of the dendritic compartment,  
“i” is a number of an area in a particular register table. 
Each area simulates 0.5 ms of real time and initially is 
filled with the value of resting potential (ReP = –80 mV).  
The first position contains the actual value of post-
synaptic potential calculated using (2.1), (2.2) and 
(2.3) for further computations within functions from 
(2.5) and (2.8).

Synaptic function — SF(t) calculates, after the ar-
rival of an action potential on a particular synapse, 
the typical time courses of excitatory or inhibitory 
postsynaptic potentials (EPSP or IPSP) and further-
more adjusted in terms of parameters calculated from 
functions: Adaptation (2.2) and Memory (2.6) to the 
appropriate register table. It could be in simply linear 
form (2.1), but other forms as double exponential 
alpha function are also possible for use.

Where: tsd — time of synaptic delay, tr — time of 
EPSP/IPSP rise, td — time of EPSP/IPSP decay, 1 milli
second (ms) = 2 steps of i. Parameters for EPSPAMPA: 
AMAX = 5 mV, tsd = 1 ms, tr = 2 ms, td = 13 ms, for 
EPSPNMDA: AMAX = 1 mV, tsd = 1 ms, tr = 2 ms, td = 
13 ms, and for IPSPGABA: AMAX = –2.5 mV, tsd = 1 ms, 
tr = 2 ms, td = 10 ms.

Adaptation — A(k,i) (for excitatory inputs):

Where S(i) is the actual value of summarised potential  
in the k compartment, ReP and Rsp parameters.  
ReP = –80mV (resting potential value), Rsp = –10 mV 
(reverse synaptic potential). It presents the possibility 
of reverse ionic flow through the membrane channels 
according to the Nernst equation.

Weight of compartment k — W(k) (for excitatory 
inputs):

Where: LSW, NE — parameters; LSW (low significant 
weight) — weight of the most distal dendrite input. 
NE = 13 — a number of excitatory inputs. Thus within 
this function the cable properties of a modelled den-
drite could be simply changed.

Function influence — Inf(a,b) of a compartment 
on b compartment (for excitatory inputs):

N = total number of inputs and a, b є N. This function 
allows for the calculation of summarised postsynap-
tic potential in a particular compartment (2.5) with 
respect to all others. 

Summarised potential — S(k; i) in compartment k  
(for excitatory inputs):

Where: NE — number of excitatory inputs, Inf (m,k) 
influence of m — compartment on k, E(m;0) the 
actual value of the appropriate register. 

Long-term synaptic potentiation (LTP), called, in 
short, Memory (Mem):
If S(k,i) > CaMT then

CaMT = –68 mV (threshold for the removal of the Mg 
ion block for NMDA channels), C(k; i) time of memory 
for compartment k, clog parameter = 2.3026. If we have 
simultaneously an action potential on excitatory input 
and opened NMDA channels due to enough depolarisa-
tion of the postsynaptic region (2.5), the LTP induction 
occurs; the weight of this synapse is being increased. 
Initiation of the cascade of biochemical reactions, those 
leading to LTP, depends of amount of calcium ions 
influenced throughout the opened NMDA channels.

We modelled that phenomenological event by 
power function:

Whereas powerA = 9 is a parameter, M(k;i) — actual 
value of SF(i) for EPSP(NMDA) in appropriate register.

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.1)

(2.7)
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Time of memory duration C(k; i):

Where: FQ; ReP — parameters. FQ — forgetting coef-
ficient: it decreases, for the next simulation step, the 
calculated memory time of the programmed value. 
Clog, powerA, and FQ are numerical parameters, 
their changes allow confining the strength and time 
of LTP to biologically plausible values for any kind of 
modelled neuron.

Art of work of firing cell model

Input function (InEx(k)) for excitatory and InInh(k) 
for inhibitory synapses adds, after the arrival of an 
action potential (input > 0), the values of the syn-
aptic function (2.1) to the appropriate tables of shift 
registers E(k;i;t), M(k;i;t) and I(k;i;t), see below (2.9), 
(2.10) and (2.11). This sum is done with respect to the 
parameters calculated from functions (2.2) adapta-
tion and (2.6) memory — LTP: thus the other func-
tions are subsequently calculated and the threshold 
function is proofed. Simplified diagram see Figure 1.

Summarised postsynaptic potential in neuron (PSP):

Where: W(k) — weight of compartment k, E(k;i), I(k;i) 
are the actual values of the tables from register E and I  
calculated with (2.9), (2.11), whereas the values of 
Adaptation (2.2) and Memory (2.6) are from a pre-
vious programme step. NE and NI are numbers of 
excitatory and inhibitory inputs. Threshold function 
for action potential: threshold = –50 mV:

Refraction is modelled for the time up to 2 ms 
by a reset of PSP value (2.11) for inhibitory input 
registers I(k;i) to the resting potential and shifting 
the voltage in the register tables E(k;i) for excitatory 
inputs according to the:

ADRV — AntiDromic Reset Voltage function (2.14); 
RePB is a parameter —voltage to which the most 
distal dendrite compartment is resetting (–79 mV), 
ReP = –80 mV; NE — number of excitatory inputs.

Shifting of registers E; M; I; occurs at the end of 
each simulation step and the values in all registers 
tables are shifted as follow (th-threshold):

Summary of parameters used for equations (2.1) 
to (2.17)

We define the numbers of Excitatory and Inhibito-
ry inputs with their precise locations on the dendrite, 
then the values and time courses of postsynaptic 
potentials, threshold and refraction time values, and 
two basic physiological values — resting potential and 
synaptic reversal potential as commonly accepted in 
any book of physiology. AMAX parameters for SF(t) 
(2.1) were defined precisely for proper work of model 
with 16 inputs. We can change it to model various 
large of synapses as in biology. The numerical param-
eters for phenomenological modelled functions (2.4), 
(2.6), (2.7), (2.8) and (2.14) were determined with 
initial trials for optimal model behaviour.

Other programmes used and download

For statistical evaluation of output action poten-
tials time series (ISI series) the StatSoft, Inc. STATIS-
TICA (data analysis software system), version 13.1 
(licensed for Medical University of Gdansk), MatLab 
The MathWorks, Inc. (licensed for Technical Univer-
sity of Gdansk), free VRA (visual recurrence analysis) 
programme of Kononow and free source code from 
Kreutz et al. [31] for ISI-distance measurement were 
used. 
(http://web.archive.org/web/20070131023353/http:/ 
/www.myjavaserver.com/nonlinear/vra/download.html)
(http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/
sourcecode.html).

The demo version of the FC simulator can be 
downloaded from the site: (http://medinf.gumed.
edu.pl/383.html). Using the demo version one can 

(2.8)

(2.10)

(2.11)

(2.9)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

http://medinf.gumed.edu.pl/383.html
http://medinf.gumed.edu.pl/383.html
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select the type of visualisation, open two tables com-
prising the values of initial parameters and inputs 
frequencies; the values could can be then accepted or 
changed before starting the simulation. For the free 
full version download under academic license contact 
the authors. The programme runs under Windows XP, 
7, 8 and 10 operating systems.

RESULTS
We configured the FC in such a way that it had 13 

excitatory and 3 inhibitory inputs, each independently 
programmed. Biologically plausible frequencies for 
all inputs spike trains were arbitrary chosen as in the 
previously related papers [3, 4, 22]. For LTP induction 
the excitatory inputs 7, 8 and 9 were stimulated at 
100 Hz for 400 ms from the 2nd second of simula-
tion. Such stimulation is closely similar to the LTP- 
-inducing protocols from the work of Bliss and Lomo [7].  
Simulations presented by Figures 2, 3 and 4 were 
performed with the FQ = 1. The simulations from 
Figure 5 present the influence of increased FQ on 
output spike-trains. In all tested cases the frequency 
of action-potential generation and the values of LTP 
increased after the training procedure. The LTP values 

increase also within the neighbouring synapses in 
relation to those which were stimulated, so the FC 
model shows clearly the heterosynaptic LTP (Fig. 2C).

We have also tested the above configuration of FC 
without any LTP inducing protocol and we have found 
the increased frequency of output and some LTP in-
duction from the 3rd second of simulation (Fig. 2D).  
This is due to the fact that at the end of the 2nd 
second there was a very narrow coincidence of some 
neigh-boring excitatory inputs. And the first noted 
increase of the LTP values occurs without that the cell 
fires any action potential. Within the used input fre-
quencies we have periodically narrow coincidence of 
impulses on neighbouring excitatory synapses; it is the 
supporting cause for slowly but steady increase of LTP.

For the demonstration of regular, periodic or cha-
otic behaviour of a spiking neuron, as well as for 
the multiple neural spike train data analysis, various 
methods can be used. We present the analysis of 
the data utilising 2-dimensional phase space graphs 
with the time evolution of trajectory and with the 
aid of VRA, developed by Eugene Kononov, which 
was selected from various methods of recurrence 
plot analysis [36]. 

Figure 1. Simplified diagram of firing cell (FC)-Neuron Model. In the dotted circle the so called spine coincidence detector for weight changes 
based upon the biological mechanism of the long term synaptic potentiation (LTP). AMPA and NMDA — kinds of biological receptors; Ex — 
excitatory; Inh — inhibitory inputs; PSP — summarised postsynaptic potential, calculated as the difference between sums of all excitatory 
(Eex) and inhibitory (Einh) inputs.
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The experiment without LTP inducing protocol 
Figure 2D shows, that after completing 2 s of simula-
tion the increased output frequency stabilises at the 
value 15.039 ± 0.104 Hz near to the most significant 
input frequency 15.033 Hz programmed for 6 excita-
tory inputs (15 Hz adopted for 0.5 ms programme 
steps). The trajectory in phase-space converges up to 

8 s to a nearly point attractor. From the left panels on 
Figure 3A, C it can be concluded that the LTP induction 
facilitates the additional firing in concordance with 
less significant inputs frequencies. This is clearly vis-
ible throughout on-line observation of the simulation 
(see video: medinf.gumed.edu.pl/383.html). Thus the 
FC changes output spike pattern during simulation 

Figure 2. Basic 10 s real time simulation of firing cell (FC) with low significant weight (LSW) = 0.2, forgetting coefficient (FQ) = 1. A. All 
input and output spike trains. On the left particular input frequencies, the position of 100 Hz stimulation illustrated by red rectangles. Red 
excitatory, green inhibitory inputs; B. FC model configuration. A small rectangle below synapse means postsynaptic thickenings; C. Changes 
in long term synaptic potentiation (LTP) values shown at 200 ms intervals for all excitatory synapses during the simulation with LTP inducing 
protocol with output spikes train and time course of summarised post-synaptic potential at the top. D. Values of summarised post-synaptic 
potential, output spike train and LTP during the simulation without LTP inducing protocol. Time [min]-forecast time of duration LTP at the end 
of simulation.
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from nearly regular to quasi-periodical with unstable 
orbits in the phase space.

To evaluate the capability of FC model, coincidence 
discrimination the set of simulations was performed, 
in which the inputs series of spikes on single excita-
tory inputs (input 10: 15 Hz and input 5: 20 Hz) were 
shifted with delay 0.5 ms. The same computations 
were done within FC model; both with and without 
the LTP inducing protocol. We present the influence of 
LTP increase on output spike trains with a method of 
ISI-distance measurement discovered by Kreuz et al. 
[31] in Figure 4A, B. The measure becomes zero when 
there are no differences and approaches 1 if the firing 
rates as compare both trains, achieve infinitely high 
differences. For a difference of 0.5 ms on single spike 
ISI-distance equals 0.000202. The obtained values 
of ISI-distances Figure 4B indicate a moderately high 
pattern of differences between compared spike trains. 
The experiments show a greater differentiation and 
higher values thus better properties for coincidence 
detection in simulation with LTP induction protocol. 
It becomes clear from the values of the diagonals in 
Figure 4B, which compare corresponding simulations 
from both series. The results resemble some data from 

physiological experiments, in which the induction of 
LTP significantly increased coincidence detection for 
synapses on distal dendrites [56].

The results of the experiments with various FQ val-
ues confirmed the biological plausibility of FC model 
as an information-processing-related mechanism. 
In all tested series the frequency of action-potential 
generation and the values of LTP increased after the 
training with LTP inducing protocol. On the left panels 
of Figure 5 we show time evolution of trajectory in 
2-dimensional phase space of ISI measurements for 
simulations with increased FQ values, as selected from 
an extensive series for FQ values 1 up to 100. As we 
compare trajectories from Figure 5 with those from 
Figure 3, for forgetting quotes above 10, trajectory 
tends to the same attractors courses as in the basic 
simulation without induction of LTP, which indicate 
a closely regular behaviour pattern. With lower for-
getting quotes we observed basic regular behaviour, 
which irregularly switches to quasi-periodical with 
greater frequency. And with increased FQ values such 
changes occur rarely. Thus the FC model could be 
considered as very complicated iterative system with 
a tendency toward various types of chaotic behaviour. 

Figure 3. The nonlinear analysis of simulations from Figure 2; without long term synaptic potentiation (LTP) inducing protocol (A, B) and with 
ones (C, D). Left panels: 2-dimmensional phase space graph of inter-spike intervals; ISI(n), ISI(n-1), with time evolution of trajectory according 
to perpendicular axis z. Time units in seconds [s]. Right panels: recurrence plots with visual recurrence analysis (VRA), which show all Euclid-
ean distances between data points from the 3-dimmensional phase space with time delay 1 (grey-tone version of original VRA basic colour 
scale). The coloured pixels are symmetrically distributed to diagonal.
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Right panels from Figures 3 and 5 are recurrence 
plots with VRA, which show all Euclidean distances 
between data points from the 3-dimensional phase 
space graphs with colour scale (Basic or Froth).

DISCUSSION
The biologically plausible modelling of synaptic 

plasticity is a very complex and difficult process. The 

change of the synaptic weight could be triggered 
by single 1 ms action potential, but the consecutive 
long-term potentiation lasts many hours or days and 
within repeated supporting retrieval even months or 
years. For practical reasons the simulation algorithms 
for network and learning rules should be as simple as 
possible for minimal acceptable biological plausibil-
ity. The STDP algorithm for synaptic weights changes 

Figure 4. Influence of inputs frequency delays on coincidence detection, forgetting coefficient (FQ) = 1. A. Inter-spike intervals (ISI) distance 
comparison of firing cell (FC) behaviour without comparisons for experiments with and without induction protocol for long term synaptic  
potentiation (LTP). In both experiments the delay of the spike series of 0.5 ms consecutively on input 5 and 10 synapses was tested. On  
the diagonal values of ISI-distances respectively for both induced LTP and with inducing stimulation. The distance value of 0.078 suggests  
a moderate difference. B. Matrix of possible ISI-distance series of simulations, below diagonal values for series with LTP induction, above 
those from series without 100 Hz stimulation (BS — basic simulations without input delays, In5-D 0.5 and In10-D 0.5 — particular inputs 
with delay 0.5 ms).
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[14, 42] could be regarded as far evolution of the 
old Hebb rule requires precise timing of presynaptic 
versus postsynaptic spikes. But recently there have 
been concerns about accuracy of such an algorithm 
[10, 18]. 

If an action potential reaches the synapse and the 
subsynaptic region is depolarised enough, does the 
calcium ions influx begin immediately and causes LTP. 
According to STDP rule the neuron should wait for 
the next postsynaptic spike to decide whether or not 
to turn on the LTP or LTD. Is it biologically plausible 
for higher inputs frequencies with tens of synapses? 

Thus the presented LTP related algorithm solves 
such problems; it works on the dendrite level, inde-
pendently for each compartment in concordance with 
canonical form of the sc. Spine coincidence detector 
[52], and in precise concomitance with the history of 
all inputs patterns. Because we have not any structural 
mechanism for the decrease of synaptic weights in 
FC, the simple FQ was introduced for biologically 

plausible working of the model; so the induced LTP 
has a finite time of duration.

Other research [3, 4] showed that in the short 
finite time (15 ms-time of EPSP course) the number 
of ISI combinations at the same synapse with regard 
to refraction is relatively small and the same for the 
modelled biological neuron, as in our FC model. Re-
fraction relates to how after firing an action potential 
the neuron cannot immediately fire another one. The 
ability for further firing must be restored throughout 
ionic flows at the axon hillock and this requires time 
– the refraction time. 

Briefly, if an action potential arrives at a synapse, 
the consecutive change of postsynaptic potential re-
mains disposable to our model or neuron for further 
computation for a time of duration of typical EPSP or 
IPSP. For EPSP it is within FC 15 ms (30 clock steps). The 
number of ISI combinations depends on the number 
of action potentials, with regard to refraction, that 
arrived at the same synapse during this time. If we 

Figure 5. Another set of simulations. Phase space trajectory graphs for inter-spike intervals (ISI) measurements (with low significant weight 
[LSW] = 0.2). Time axes with units at 0.5 ms; 20,000 means 10 s of simulation. A. For basic simulation without long term synaptic potentia-
tion (LTP) inducing protocol and forgetting coefficient (FQ) = 1. B, C, D, E. Simulations with the FQ 1, 8, 24, 48, subsequently. The training of 
400 ms at 100 Hz was with action potential spike trains on the 7th, 8th and 9th input from 2 s. On the right visual recurrence analysis (VRA) 
plots for each simulation in the Froth special colour scale. The increased forgetting diminishes the elevated LTP learning effect. F. Matrix of 
ISI-distance measurements for 5 presented simulations from panels A, B, C, D, E.
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assume the difference of one clock step at one interval 
as significant for further computing, it can be calcu-
lated 6272 combinations from one spike to densely 
burst of 8 spikes. If we assume 1 ms as a significant 
difference, then we have 623 combinations. For 16 
inputs — synapses of FC the total number of varia-
tions should be evaluated from the equation:

where n is the above calculated number of combina-
tion within the single output-input line equals 6272 
and k the number of synapses [3]. The calculated 
variation equals 627216. And what variation could be 
calculated for 12,000 synapses on the hippocampal 
pyramidal cell or for 200,000 synapses on Purkinje 
cerebellar cell? Such calculations show all the most 
significant constrains for any further computational 
modelling. Before writing the presented work we 
have performed about 500 simulations each with 
another combination of inputs frequencies and initial 
model settings, but even for such simplified model 
as FC, we have for 10 s of simulation a total googol 
of variations. Coworkers of Mohemmed [37] have 
been presented SPAN — a spiking neuron that is 
able to learn associations of arbitrary spike trains in  
a supervised fashion allowing the processing of spatio-
temporal information encoded in the precise timing of 
spikes. It allows for recognition of presented over 200 
synapses spike patterns during 200 ms simulation. But 
it is a supervised learning rule and several hundreds 
of simulations do not cover all the variations possible 
for 200 to 600 hundreds of synapses even with that 
short time.

In each computer model the possibility of sub-
millisecond coincidence detection should be as pre-
cise as the smallest modelled time step due to use 
of real values for computation. In biological neurons 
various membrane currents need some time to elevate 
potential, so the precision could be smaller, but the 
mathematical models of the dendrite show also the 
ability to perform sub-millisecond coincidence de-
tection [53]. Therefore the high rate of coincidence 
detection should be a significant advantage of FC. 
We hope with further experimentation to find the 
set of initial values which should be most suitable 
for very accurate discrimination of various inputs 
patterns. The existence of chaos processes in brain 
networks is well confirmed and thus they should also 
exist in accurate models of neural tissue [30, 46]. 
Chaos processes could not be precisely predicted 
and for multiple inputs data and for longer time it is 

practically impossible to find any analytical solution. 
The Izhikevich model, as well as many others similar 
ones like Hindmarch-Rose (HRM), various Leaky In-
tegrate and Fire (LIF), or even Spike Response Mod-
els (SRM) consists of simple differential equations 
with only a few parameters. It seems easy to define  
a set of parameters, and then feed a week addi-
tional input signal in order to investigate the “routes 
to chaos” or “stochastic resonance phenomena”  
[2, 40, 41]. When a model of even minimal biological 
plausibility is being built, it must present with any 
efficient learning mechanism (algorithm). As for the 
mature living neuron cells a defined set of internal 
parameters (in the model referred to as initial values) 
is stable, although there could be some differences for 
various brain areas. Thus, we have defined the numbers 
of Excitatory and Inhibitory inputs together with their 
precise locations on the dendrite, then the values and 
time courses of postsynaptic potentials, threshold and 
refraction time values, and two basic physiological val-
ues — resting potential and synaptic reversal potential. 
Using these above parameters we can introduce for 
model any algorithm of weight change (learning) for 
the inputs (synapses). In order to initiate the simulation 
we must define a signal for all excitatory inputs. This 
is “I” in the Ishikevich equations.

With 16 inputs altogether the FC model shows at 
last tens of thousands possible variations of the inputs 
pattern. We have only selected a very few of those 
with the biologically plausible frequencies. Thereaf-
ter we could evaluate the output spikes trains. How 
the output spikes train can change after the weight 
elevation at particular input (learning, LTP)? We per-
formed more than a thousand simulations with the 
single neuron, as well as with a small network of ten 
neurons connected as in the CA1 hippocampal area 
of the mammalians brain. Any changes in the initial 
values (internal parameters) or inputs patterns caused 
the following modifications of the ISI time series on 
the output, even for the 10 s or 20 s real time course 
simulations. It is the basic evidence, that the FC model 
has a chaotic dynamical properties. 

There some remarks for the stochastic resonance 
phenomenon from the biological standpoint. It was 
first discovered in 1950 by Bernhard Langenbeck [33]. 
As of today such diagnostic method is widely used, 
The physical white noise signal enhances the ability 
of inner ear receptors to respond. 

It is a well-known psychological phenomenon that 
certain emotions such as curiosity or fear enhance the 

(2.18)
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ability to learn and memorise new patterns [47]. This 
is not a simple equivalent of accessory weak noise 
input, the pyramidal neurons in the cerebral cortex or 
the hippocampus become additional inputs from the 
excited emotion areas such as amygdaloid body [15]. 
It could be interpreted as an indirect supervised learn-
ing algorithm. Nevertheless in analysed simulations of 
FC all 16 inputs are programmed, so the “background 
noise” was still presented. The basic mechanism for 
Long Term Potentiation induction to synapses is the 
calcium ions influx throughout NMDA channels [5, 6,  
35, 44]. Such an ionic influx can occur only after 
removal of magnesium ions blockade of the NMDA 
channel by enough depolarisation of postsynaptic 
region. An instant depolarisation of the subsynaptic 
region depends on the history of inputs patterns, and 
so any accessory input in any form or shape could 
potentially enhance the ability to learn. It could be 
considered as a remote equivalent of the stochastic 
resonance phenomenon. As a cardinal mechanism 
involved in the learning process within the nervous 
tissue, the above should be employed in every com-
plex or simplified neuronal model. 

The presented nonlinear methods of ISI analysis 
are quite universal and could be used with any bina-
rised time series of data, i.e. for evaluation of changes 
in heart rhythm and prognosis [1]. The FC model al-
lows modifications of parameters from various func-
tions and the changing of the cable properties of 
the dendrite with LSW values and so use them for 
modelling various types of excitatory or also inhibitory 
neurons. It is also possible to modify input functions 
so that they collaborate with the receptors in a way 
as ribbon synapse and use the FC for the modelling 
of ganglion cells [51]. 

It is the possibility of extracting the pure informa-
tion processing algorithm from any other biological 
background (channels, membranes). We avoid using 
any of Hodgkin-Huxley, Integrate and Fire or Spike 
Timing Dependent Plasticity formalisms. Thus the ba-
sic concept of our model was derived directly from the 
theory of transistors with floating gates and capacitor 
coupling [48, 49] as well as from computer language 
and the simply models of all biological details con-
sidered within hitherto models of neuron. So the 
equations (2.1) to (2.17) are shown as in the source 
code, with parameters confined to biologically plau-
sible values. The result is a mathematically consistent 
circuit that matches main prominent features of the 

living nervous cell, i.e. time integration, coincidence 
detection, learning with inputs weights changes and 
forgetting processes. Such circuits could be used to 
model nonlinear dynamic systems, as an alternative 
to the traditional differential equations approach. 
As shown within Figure 2, we are able to repeat by 
computer the canonical experiment of Bliss and Lomo 
from 1973 [7] for induction of long term synaptic 
potentiation in the rabbit brain hippocampus. 

Such simplified methods are not adequate for the 
modelling of detailed neurophysiologic data concern-
ing various receptors and channels, with even hun-
dreds of synapses, but should have many advantages 
for long time examinations of various recognition or 
decision processes. George and Hawkins [20] use, in-
stead of neurons, the HTM nodes abstracted as coinci-
dence detectors and a mixture of Markov chains, and 
demonstrate the application of the derived circuits 
for the modelling of the subjective contour effect and 
pattern recognition. Thus the developed FC-circuit 
can be used for modelling physiological phenomena 
and for deriving testable predictions about the brain.

Especially, the circuit model within shift registers is 
well suited for spatiotemporal computing, which has 
recently seen more interest [12]. Such simple math-
ematical of biologically inspired processors that work 
like living neural circuits, And they could be more 
easily implemented in hardware such as Neuron-MOS 
Transistor of Shibata and Ohmi [48, 49] and project-
ing its’ use for neuron circuits built with nanodot 
technology described by Morie et al. [38]. The memris-
tive hardware emulation of synaptic plasticity is still  
a point of great interest [28, 32, 45]. 

CONCLUSIONS
Computational abstractions could be used to 

model the cognitive activity taking place in the brain. 
The problem would be then somehow collect these 
processes, and embody them into biological neural 
networks. Thus the hardware implementation of FC-
circuit could be a step forward to solve the above 
question with regard to the dominant significance of 
synchrony between various brain regions in conscious-
ness phenomenon [43]. As already mentioned for the 
model of 1 million interconnected neurons a cluster of 
over 4000 processors should be used [24]. It seems that 
one can only hope for the future to bring along new 
technology enabling more efficient analog processors 
to be harnessed for computational research.
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