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Background: Traumatic brain injury (TBI) is in part associated with the disruption 
of the blood-brain barrier. In this study, we analysed the histopathological chan-
ges in E-cadherin and vascular endothelial growth factor (VEGF) expression after 
TBI in rats. 
Materials and methods: The rats were divided into two groups as the con-
trol and the trauma groups. Sprague-Dawley rats were subjected to TBI with 
a weight-drop device using 300 g/1 m weight-height impact. After 5 days of TBI, 
blood samples were taken under ketamine hydroxide anaesthesia and biochemi-
cal analyses were performed. The control and trauma groups were compared in 
terms of biochemical values.
Results: There was no change in glutathione (GSH) levels and blood-brain barrier 
permeability. However, malondialdehyde (MDA) and myeloperoxidase (MPO) ac-
tivity levels increased in the trauma group. In the histopathological examination, 
choroid plexus in the lateral ventricle, near the pia mater membrane, was removed. 
In the traumatic group, some of epithelial cells were hyperplasic. Some of them 
were peeled off the apical surface and had local degeneration. 
Conclusions: In addition, we observed congestion in capillary vessels and mo-
nonuclear cell infiltration around the vessels. After TBI, the increase in VEGF 
levels, vascular permeability, and interaction with VEGF receptors in endothelial 
cells lead to oedema of the vessel wall. On the other hand, E-cadherin expres-
sion decreased in the tight-junction structures between epithelial cells and basal 
membrane, resulting in an increase in cerebrospinal fluid in the intervillous area. 
(Folia Morphol 2018; 77, 4: 642–648)
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INTRODUCTION
Traumatic brain injury (TBI) is common and a major 

cause of morbidity and mortality worldwide. TBI is 
accompanied by a biphasic opening of the blood-
brain barrier to macromolecules and by an early and 
delayed increase in brain water content. However, the 

molecular and cellular mechanisms underlying these 
phenomena have not been fully understood. TBI is 
an injury to the brain caused by a blow or jolt to the 
head from blunt or penetrating trauma. The injury 
that occurs at the moment of impact is known as the 
primary injury. Primary injuries can involve a specific 
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lobe of the brain or the entire brain. Sometimes, the 
skull may be fractured, but not always. During the 
impact of an accident, the brain crashes back and 
forth inside the skull causing bruising, bleeding, and 
tearing of nerve fibres. In addition, TBI is suspected 
to contribute to a variety of chronic degenerative 
processes such as chronic traumatic encephalopathy, 
Alzheimer disease, and Parkinson disease [33]. TBI is 
a nondegenerative, noncongenital insult to the brain 
from an external mechanical force, possibly leading 
to permanent or temporary impairment of cognitive, 
physical, and psychosocial functions, with an associ-
ated diminished or altered state of consciousness. The 
definition of TBI has not been consistent and tends to 
vary according to specialties and circumstances. Often, 
the term brain injury is used synonymously with head 
injury, which may not be associated with neurologic 
deficits. The definition also has been problematic with 
variations in inclusion criteria. Symptoms of a TBI 
can be mild, moderate or severe, depending on the 
extent of damage to the brain. Mild cases may result 
in a brief change in mental state or consciousness, 
while severe cases may result in extended periods of 
unconsciousness, coma or even death [15, 31]. 

In brain injuries and infections, leukocytes accumu-
late in the cerebrospinal fluid (CSF) by passing through 
the choroid plexus. And, severe disruptions occur in the 
choroid plexus-CSF nexus that destabilise the nearby 
hippocampal and subventricular neurogenic regions. 
Following invasive and non-invasive injuries to cor-
tex, several adverse sequelae harm the brain interior. 
Recovery from TBI is facilitated by upregulated cho-
roidal/ependymal growth factors and neurotrophins, 
and their secretion into ventricular CSF. There, by an 
endocrine-like mechanism, CSF bulk flow convects 
the neuropeptides to target cells in injured cortex for 
aiding repair processes; and to neurogenic niches for 
enhancing conversion of stem cells to new neurons.

Histologically, the choroid plexus is a highly vas-
cularised villous structure, covered with a single layer 
of cuboidal epithelial cells. It is present in all four 
ventricles of the brain and plays an important and 
probably major role in the production of CSF. The cho-
roid epithelium is sealed by continuous apical bands 
of tight junctions, and the capillaries are unusually 
wide, thin-walled, and fenestrated. The structure 
of the secretory cells resembles that found in other 
well-known fluid-transporting epithelia, i.e., they are 
supplied with various membrane elaborations such as 
apical microvilli, basal and basolateral infoldings, and 

interdigitating processes, as well as an abundance 
of mitochondria [36]. Choroid plexus epithelial cells 
constitutively express adhesion molecules such as 
vascular cell adhesion molecule-1, intercellular adhe-
sion molecule-1, P-selectin, and E-cadherin on their 
surfaces [6, 17, 25, 35, 39, 41], which help to retain 
the leukocytes following their exit from the vascula-
ture. Normal adult choroid plexus strongly expresses 
E-cadherin as adhesion molecules. E-cadherin is found 
mainly in the epithelia, where it promotes tight cell-
cell associations known as adherens junctions [6, 37]. 
The key role of E-cadherin in progression of epithelial 
tumours is well established. E-cadherin belongs to 
the cadherin family, which are calcium-dependent 
transmembrane glycoproteins involved in cell-to-cell 
adhesion by homophilic interaction between their ex-
tracellular domains of two adjacent cells [12, 14, 30]. 

Proliferating cell nuclear antigen (PCNA) is a 36-kd 
DNA polymerase delta auxiliary protein that com-
plexes with cyclin D and cyclin-dependent kinases, 
involved in the proliferation of neoplastic as well as 
non-neoplastic cells, and it is specifically expressed in 
proliferating cell nuclei. This specific antibody recog-
nises PCNA protein, which is at the maximum level in 
the late G1 and S phase of proliferating cells [8]. The 
role of vascular endothelial growth factor (VEGF) in 
developmental and pathological angiogenesis is well 
established. Similarly, although transforming growth 
factor (TGF-b) is involved in angiogenesis, presuma-
bly by mediating capillary stability, its involvement 
in quiescent vasculature is virtually uninvestigated. 
Growth factors such as VEGF and TGF-b are known 
to be involved in the maintenance of the choroid 
plexus. VEGF the vasculature of the choroid plexus 
and has a role in the permeability of the blood vessels. 
These factors may also be distributed through the 
CSF into the brain parenchyma to act on other cells. 
VEGF and TGF-b may also act on the ependymal cells, 
which form a metabolic barrier between the brain 
parenchyma and the CSF [21].

In this study, structural changes in the cell-cell 
junction structure of choroid plexus, cell apoptosis 
and vascular angiogenesis were examined histopatho-
logically and immunohistochemically after traumatic 
brain injury

MATERIALS AND METHODS
Animals and experimental design

The investigation was conducted in accordance 
with the Guide for the Care and Use of Laboratory 
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Animals published by United States National Institutes 
of Health (NIH Publication no. 85-23, revised 1996). 
All procedures performed in this experiment were ap-
proved by the Ethics Committee for the Treatment of 
Experimental Animals (Faculty of Medicine, University 
of Dicle, Turkey). Male Sprague-Dawley rats (300– 
–350 g) were maintained under 23 ± 2°C and 12 h 
light/dark cycles with ad libitum access to standard 
pelleted food and water. The rats were divided into 
two groups as trauma and control. A rectal probe 
was inserted, and the animals were positioned on 
a heating pad that maintained the body temperature 
at 37°C. The widely used diffuse brain injury model 
described by Marmarou et al. [22] was used. Briefly, 
a trauma device which works by dropping a constant 
weight from a specific height through a tube was 
used. A weight of 300 g was dropped from a 1 m 
height, which can induce mild trauma, as shown by 
Ucar et al. [38]. Each group consisted of 16 animals 
(control and trauma group). All rats at the end of 
experiment were healthy and no difference in food/ 
/water consumption and body weight gain between 
experimental and control rats were observed. After 
5 days, all animals were sacrificed by an intraperitoneal 
injection of 5 mg/kg xylazine HCl (Rompun, Bayer 
HealthCare AG, Germany) and 40 mg/kg ketamine 
HCl (Ketalar, Pfizer Inc, USA). After TBI, blood sam-
ples were taken from the animals and analysed with 
various biochemical markers. Then, choroid plexus 
in lateral ventricles were rapidly removed. For the 
histological examination, choroid plexus tissues were 
fixed in 10% formaldehyde solution, post-fixed in 70% 
alcohol, and embedded in paraffin wax. The sections 
were stained with haematoxylin-eosin.

Malondialdehyde and glutathione assays

Tissue samples were homogenised with ice-cold 
150 mM KCl for the determination of malondialde-
hyde (MDA) and glutathione (GSH) levels. The MDA 
levels were assayed for products of lipid peroxidation, 
and the results are expressed as nmol MDA/g tissue 
[34]. Glutathion was determined by the spectropho-
tometric method, which was based on the use of 
Ellman’s reagent, and the results are expressed as 
μmol GSH/g tissue [27].

Tissue myeloperoxidase activity

Myeloperoxidase (MPO) activity in tissues was 
measured by a procedure similar to that described 
by Hillegas et al. [11]. MPO is expressed as U/g tissue.

Evans blue assay for blood–brain barrier 
permeability

To evaluate the blood-brain barrier integrity, Evans 
blue dye was used as a marker of albumin extravasa-
tion [10]. Evans blue was expressed as μg/mg of brain 
tissue against a standard curve

Immunohistochemical technique

Formaldehyde-fixed tissue was embedded in par-
affin wax for further immunohistochemical examina-
tion. Sections were deparaffinised in absolute alcohol. 
The antigen retrieval process was performed twice 
in citrate buffer solution (pH 6.0), first for 7 min, 
and second for 5 min, boiled in a microwave oven at 
700 W. They were allowed to cool to room temperature 
for 30 min and washed twice in distilled water for 
5 min. Endogenous peroxidase activity was blocked 
in 0.1% hydrogen peroxide for 20 min. Ultra V block 
(Cat. No. 85-9043, Invitrogen, Carlsbad, California, 
USA) was applied for 10 min prior to the application 
of primary antibodies E-Cadherin antibody 1:100 (Cat. 
No. MA5-12023, Invitrogen), Vascular–Endothelial 
Factor (VEGF) antibody (1:100) (Cat. No. PA3-067, 
Invitrogen). Secondary antibody (Cat. No. 85-9043, 
Invitrogen) was applied for 20 min. Slides were then 
exposed to streptavidin-peroxidase for 20 min. Chro-
mogen diaminobenzidine (DAB, Cat. No. 34002, In-
vitrogen) was used. Control slides were prepared 
as mentioned above, but omitting the primary an-
tibodies. After counterstaining with Haematoxylin 
and washing in tap water for 8 min and in distilled 
water for 10 min. Then, sections were examined in 
light microscope.

Statistical analysis

Statistical analysis was carried out using Graph-
Pad Prism 4.0 software (GraphPad Software, 2003, 
San Diego, CA, USA). All data are presented as mean 
± standard deviation. Groups of data were compared 
with an analysis of variance (ANOVA) followed by 
Tukey’s multiple comparison tests. Values of p < 0.05 
were considered as significant.

RESULTS
When the tissue MPO activities of the control group 

were compared with that of the trauma group, a statis-
tically significant difference was observed (p < 0.01); 
these data showed that after TBI, tissue MPO activity 
was increased. A significant decrease was observed in 
trauma group after TBI when compared with control 
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(p < 0.001). There were no significant differences 
between the control and trauma groups in terms of 
GSH (p = 0.591). And also, there were no significant 
differences between the control and trauma groups 
in terms of blood-brain barrier permeability (Table 1).

In the control group, epithelial cells of choroid plex-
us sitting on the membrane were regular and formed 
protrusions towards the apical surface. Structures 
of capillaries from pia mater were normal (Fig. 1A). 
In the group with TBI, some of epithelial cells were 
hyperplasic, some of were with local degeneration 
with peeled off from apical surface. Dilation and 
congestion in capillary vessels, mononuclear cell in-
filtration around the vessels, and de-squamous cells 
in inter-villous areas were observed (Fig. 1B). VEGF 
expression was positively observed in the cells of the 
ependymal cells of the rat choroid plexus section 
in the control group, while weak VEGF expression 
was observed in capillary endothelial cells (Fig. 1C). 
In the trauma group, an increase in VEGF expres-
sion was observed along the choroidal membrane 
and in the ependymal cells, whereas VEGF expres-
sion was also observed in the capillary vascular en-
dothelial cells as well as inflammatory cells (Fig. 1D). 
The increase in VEGF expression after traumatic injury 
suggests it may induce angiogenetic effect, espe-
cially in the vessels, to affect cellular permeability. In 
ependymal cells of the control group, PCNA expres-
sion was observed negative in the nuclei of vascular 
endothelial cells (Fig. 2A). After TBI, PCNA expression 
was positively observed in some of the nuclei of en-
dothelial cells and ependymal cells (Fig. 2B). In the 
control group, E-cadherin expression was positive 
in the epithelial cell-membrane areas and in cell-cell 
junctions (Fig. 2C). In the trauma group, an increase 
in accumulated secretion was observed in inter-villous 
areas, while E-cadherin expression was reduced in 
some epithelial cell-membrane and in cell-cell junction 
areas (Fig. 2D).

Figure 1. A. Control group. Normal appearance of regular cells and 
vascular structures in villous processes of choroid plexus, haema-
toxylin-eosin (HE) staining; bar 100 µm; B. Trauma group. Hyper-
plasia and degeneration in some epithelial cells (arrow), dilation 
and congestion in capillary vessels, mononuclear cell infiltration 
around the vessels, HE staining; bar 100 µm; C. Control group. 
Weak vascular endothelial growth factor (VEGF) expression in 
capillary endothelial cells, VEGF immunostaining; bar 100 µm; 
D. Trauma group. An increase in VEGF expression along the 
choroidal membrane and in the ependymal cells (arrow), VEGF 
immunostaining; bar 100 µm.

Figure 2. A. Control group. Negative proliferating cell nuclear 
antigen (PCNA) expression in the nuclei of vascular endothelial 
cells, PCNA immunostaining and haematoxylin stain; bar 100 µm; 
C. Trauma group. PCNA positive expression in some of the nuclei 
of ependymal and endothelial cells following traumatic brain 
injury (arrow), PCNA immunostaining and haematoxylin staining; 
bar 100 µm; C. Control group. Positive E-cadherin expression 
in the epithelial cell-membrane areas and in cell-cell junctions, 
E-cadherin immunostaining; bar 100 µm; D. Trauma group. Weak 
E-cadherin expression in some epithelial cell-membrane and in 
cell-cell junction areas (arrow), E-cadherin immunostaining; bar 
100 µm.

Table 1. Statistical analysis of biochemical parameters in the 
control and trauma groups

Control Trauma

Malondialdehyde [nmol/g] 34.96 ± 2.945 53.80 ± 7.810***

Glutathione [µmol/g] 1.524 ± 0.183 0.980 ± 0.136***

Myeloperoxidase [U/g] 5.894 ± 0.994 7.322 ± 0.714**

Blood-brain barrier permeability 
[mg/g]

2.077 ± 0.217 3.679 ± 0.582***

Values are represented as mean ± standard deviation; **p < 0.01, versus control; 
***p < 0.001, versus control

A B

C D

A B

C D
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DISCUSSION
Traumatic brain injury is an injury that affects not 

only brain tissue but other functional organs. Previous 
studies have shown that a variety of pathological 
factors, such as oxidative stress, the inflammatory 
response and apoptosis, are involved in secondary 
brain injury after TBI. Özevren et al. [26] found en-
larged blood vessels, bleeding and swelling after 
traumatic injury in the brain. In addition, nuclei of the 
neurons were dissociated and vacuolar degeneration 
was observed. Furthermore, early interventions to 
reduce the level of oxidative stress and the extent of 
the inflammatory response can significantly reduce 
the extent of TBI [9]. TBI often promotes disruption 
of blood-brain barrier integrity and the neurovascular 
unit, which can result in vascular leakage, oedema, 
haemorrhage, and hypoxia. Other pathologic mech-
anisms include cell death within the meninges and 
brain parenchyma, stretching and tearing of axonal 
fibres, and disruptions at the junctions between white 
and grey matter, stemming from rotational forces that 
cause shearing injuries [1].

The brain requires a constant supply of oxygen 
and nutrients for its proper functioning and is ex-
tremely vulnerable to hypoxia (reduced supply of 
oxygen), ischaemia (reduced supply of blood), and hy-
poxia-ischaemia (a condition wherein there is reduced 
supply of both blood and oxygen). Following hypox-
ic or hypoxic-ischaemic insult, some choroid plexus 
epithelial cells were swollen and filled with closely 
packed vacuoles indicative of functional impairment. 
In hypoxic conditions, choroid plexus epithelial cells 
showed massive accumulation of glycogen and the 
extrusion of cytoplasmic fragments from the apical 
cell surfaces into the ventricular lumen, suggesting 
altered production of CSF [32]. Indeed, following 
ischaemic insult, evidence of cell death was reported 
in the choroid plexus [28]. The cell death observed in 
the choroid plexus is suggested to favour increased 
permeability at the blood-cerebrospinal fluid barrier, 
providing access to circulating cytokines, excitatory 
amino acids, and calcium to the CSF [7, 13, 24]. The 
cell death in the choroid plexus could also lead to 
reduced secretion of trophic factors, which could 
further account for the brain damage [5]. Besides the 
choroid plexus, structural alterations were observed 
in ependymal cells, and this would render them per-
meable to large cytotoxic molecules that had gained 
access to the CSF from the blood through the disrupt-
ed blood-cerebrospinal fluid barrier. These cytotoxic 

molecules might exacerbate the injury by affecting 
periventricular brain tissue [2, 29].

Several studies indicated that a non-tissue-specific 
expression of N-cadherin in tumours plays a crucial role 
in cell migration, invasion, and metastasis, as part of 
the epithelial-to-mesenchymal transition [40]. E-cad-
herin expression might facilitate the stabilisation of 
tumour metastases in a new environment in order to 
re-establish tissue architecture [3]. The choroid plexus 
is involved in protecting the central nervous system 
against cell-membrane barriers, inflammatory cells, 
pathogens and toxins. Tight junctions between the 
apical parts of the choroid plexus epithelial cells are 
necessary for tight junctions and adhesive junctions. 
After TBI, E-cadherin expression shows a decrease in 
the cell-cell junction areas. However, the openings in 
the intercellular space expands and the cerebrospinal 
fluid spreads over a large area.

The choroid plexus shows high levels of VEGF [42], 
and its expression has been located on the epithelial 
cells [20, 23, 32, 42]. The effect of elevated VEGF 
levels in CSF has not been reported, although it is 
known that elevated VEGF levels in the brain increase 
the vascular permeability due to the effect of VEGF 
on endothelial cell junctions and fenestrations in 
endothelial cells. In hypoxic conditions, the epend-
ymal cells covering the ventricles are enlarged and 
vacuolated, which is thought to cause CSF to cause 
extravasation and oedema in the peripheral brain 
tissue [16]. Krum and Khaibullina [18] showed that 
inhibition of VEGF signals, including VEGF receptor-1, 
decreased the numbers of reactive astrocytes and 
prevented glial scar formation in TBI models. After 
TBI, the increase in VEGF levels, vascular permeability, 
and interaction with VEGF receptors in endothelial 
cells lead to the formation of oedema and oedema 
in the resulting vessel wall. A critical mechanism in 
TBI pathophysiology is the activation of astrocytic 
proliferation which eventually leads to the formation 
of a glial scar [4, 18]. After TBI, many astrocytes mi-
grated to the wound area and became active rapidly. 
Studies have shown that PCNA expression is clearly 
elevated and that many glial fibrillary acidic protein 
positive cells express PCNA on day 3 post-TBI [19]. In 
this study, we observed that PCNA positive expression 
in some of the nuclei of ependymal and endothelial 
cells following TBI results in increased desquamation 
in cells, inflammatory cell condensation, deterioration 
of cell nucleus structure and apoptotic changes. After 
TBI, tight junctions in the apical surface of cubic cells 
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complexes were deteriorated. Since intercellular ad-
herent junctions were weakened, there were changes 
in cell-cell junctions. When epithelial cells and vas-
cular endothelial cells with their basal membranes 
are examined in terms of the cell-to-cell reaction, 
interactions between cells were disrupted. And, it 
was seen that decreased expression of E-cadherin 
expression caused increased secretion with alteration 
of membrane structure. 

CONCLUSIONS
In conclusion, it is thought that the fluidity of 

the cerebrospinal fluid may be affected by factors: 
(i) impairment of active transport caused by E-cadherin 
depletion between cellular junctions of degenerated 
cells in choroid plexus, (ii) the occupation of apoptotic 
cells into the intervillous area, (iii) the increase in VEGF 
proteins in the vascular endothelial cells, (iv) the induc-
tion of angiogenic effect after traumatic brain injury.
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