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Background: The neurochemistry of hepatic nerve fibres was investigated in 
large animal models after dietary exposure to the endocrine disrupting compound 
known as bisphenol A (BPA). 
Materials and methods: Antibodies against neuronal peptides were used to study 
changes in hepatic nerve fibres after exposure to BPA at varying concentrations 
using standard immunofluorescence techniques. The neuropeptides investiga-
ted were substance P (SP), galanin (GAL), pituitary adenylate cyclase activating 
polypeptide (PACAP), calcitonin gene regulated peptide (CGRP) and cocaine and 
amphetamine regulated transcript (CART). Immunoreactive nerve fibres were 
counted in multiple sections of the liver and among multiple animals at varying 
exposure levels. The data was pooled and presented as mean ± standard error 
of the mean. 
Results: It was found that all of the nerve fibres investigated showed upregulation 
of these neural markers after BPA exposure, even at exposure levels currently 
considered to be safe. These results show very dramatic increases in nerve fibres 
containing the above-mentioned neuropeptides and the altered neurochemical 
levels may be causing a range of pathophysiological states if the trend of over-
-expression is extrapolated to developing humans. 
Conclusions: This may have serious implications for children and young adults 
who are exposed to this very common plastic polymer, if the same trends are 
occurring in humans. (Folia Morphol 2018; 77, 4: 620–628)
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INTRODUCTION 
In our modern world, artificial polymers are found 

all around. Unfortunately, at least one of those pol-
ymers may be causing serious deleterious health 

effects, even at extremely low doses. Bisphenol A 
(BPA) has been used for several decades as a key 
monomer in the production of polycarbonates, and is 
also known as BPA or simply bisphenol. BPA is mainly 
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used for the manufacture of plastic linings found in 
metal food and soft drink containers, since the plastic 
shields the contents from absorbing a metallic taste. 
However, BPA has also been used in the fabrication 
of plastic bottles, dental prosthetics, thermal paper, 
food storage containers found in the home and more 
[6, 7, 51]. It may also be found as an environmental 
pollutant, which may contaminate drinking water as 
well as any seafood harvested from contaminated 
ocean waters [3, 14, 16]. The health effects are wide 
ranging and especially seem to impact the develop-
ment of children and young adults, the reproductive 
system, and the immune system, which may lead to 
carcinomas [45]. In children and young adults, BPA 
has been correlated with altered energy metabolism 
leading to obesity, as well as psychological disorders 
including ADHD and increased aggression under nor-
mal circumstances [26, 27, 55]. 

Originally, BPA was considered to be safe, since it 
only acts as a typical chemical toxin at relatively high 
levels. However, it has only been realised within the 
last 10 years that BPA is a xenohormone that imitates 
oestrogen within the body. This means that BPA has 
been classified as an endocrine disrupting compound 
(EDC) and interferes with the normal functioning of 
many signalling processes. Therefore, even nano-
gram quantities of bisphenol may disrupt normal 
endocrine signalling [46]. By using standard immu-
nochemical techniques, five different neurochemical 
markers were investigated. Intrahepatic nerve fibres 
were stained using antibodies against the neuropep-
tides: SP, GAL, PACAP, CGRP, and CART. Cocaine and 
amphetamine regulated transcript (CART), galanin 
(GAL) and calcitonin gene regulated peptide (CGRP) 
have been found to be part of the system regulating 
metabolism and energy utilisation; while substance 
P (SP) and pituitary adenylate cyclase activating pol-
ypeptide (PACAP) have been found to be correlated 
with psychological disorders at altered levels. 

The particular study presented here is focused 
upon the effects of BPA on the development of he-
patic nerve fibres. By using selected neural markers, 
this study evaluated the effects of BPA on the nerve 
fibres of porcine liver in order to determine if the 
level of expression had changed. These markers are 
known as “gut-brain” peptides [60]. These peptides 
are released from the gastrointestinal tract and influ-
ence the hypothalamus, mainly, in order to properly 
regulate physiological responses [47]. This investiga-
tion focused upon the liver, since the small intestine 

is responsible for absorbing most ingested molecules 
and sending them directly to the liver through the 
hepatic portal vein [24, 32]. Therefore, any vertebrate 
consuming dietary BPA would expose their liver to 
that BPA very quickly. This study exposed immature 
swine to bisphenol for 28 days, and tested hepatic 
nerve fibres for changes in the characteristics of se-
lected neuronal markers. Swine are often used as an 
animal model to approximate human physiology [4]. 
There was a deliberate choice to use the domestic pig 
for this experiment. There are many similarities in the 
organisation of the nervous system between humans 
and pigs, both physiologically and neurochemically 
[10, 20, 34, 56]. Therefore, this species should be 
a reasonable animal model for studying the influence 
of pathological substances on the human peripheral 
nervous system, since the porcine animal model is 
one of the best approximations of human physiology 
available. Changes in the nerve fibres after BPA expo-
sure in the developing pig could indicate that BPA is 
altering these neuropeptides and having unwanted 
side effects in developing children, which would need 
to be confirmed by further research. 

MATERIALS AND METHODS
The present study was made on 15 immature 

sows of the Piétrain x Duroc breed at the age of 
8 weeks with an body weight of 18–20 kg. Pigs were 
kept under typical laboratory conditions adapted for 
this animal species. The experiment was performed in 
compliance with the instructions of the Local Ethical 
Committee for Experiments on Animals in Olsztyn 
(Poland) decision number (28/2013).

After a 3 day adaptive period, the pigs were 
randomly divided into three experimental groups: 
1) control group — placebo (empty gelatin capsules 
for 28 days during feeding); 2) experimental group I 
(received BPA capsules at a dose acceptable under 
European legislation — 0.05 mg (50 μg)/kg bw/day); 
3) experimental group II (received BPA capsules at a dose 
10 times higher than the acceptable level — 0.5 mg/ 
/kg bw/day). Every 4 days before the morning feeding, 
all animals were weighed in order to determine their 
body weight and calculate the proper dosage of BPA. 

After 28 days of BPA administration, the animals 
were premedicated with Stressnil (Janssen, Belgium, 
75 μL/kg of body weight, i.m.). After about 30 min 
the animals were euthanised using an overdose of so-
dium thiopental (Thiopental, Sandoz, Kundl-Rakúsko, 
Austria, i.v.). Tissues were collected from all sows. 
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Sections of liver were fixed in 4% buffered paraform-
aldehyde, rinsed in phosphate buffer for 3 days and 
kept in 18% sucrose at 4°C. After at least 2 weeks, the 
fragments of liver were frozen at –23°C and cut into 
10 μm-thick sections using a microtome (Microm, HM 
525, Walldorf, Germany). The sections were subject-
ed to a routine single-labelling immunofluorescence 
technique according to the method described previ-
ously by Gonkowski and Wojtkiewicz [17, 18, 35, 59]. 
A condensed description of the method is as follows: 
45 min of drying; incubation with a blocking solution, 
which included 10% normal goat serum, 0.1% bovine 
serum albumin, 0.01% NaN3, Triton ×–100 and thi-
merozal in phosphate buffered saline (PBS) for 1 h; 
overnight incubation with a polyclonal “primary” 
antibody directed towards SP, GAL, PACAP, CGRP, or 
CART; incubation (for 1 h) with species-specific anti-
sera conjugated to fluorescein isothiocyanate (FITC) 
or biotin, which was visualised by a streptavidin-CY3 
complex (the specification of primary and secondary 
antibodies used in the present study is shown in 
Table 1). Rinsing with PBS (3 × 10 min, pH 7.4) was 
performed between each of the stages. 

During the present investigation, the standard 
controls of the specificity of “primary” antibodies 
were performed. These included pre-absorption of 
the particular antisera with appropriate antigens, 

as well as “omission” and “replacement” tests that 
completely eliminated immunofluorescence signals.

To evaluate the number of SP-, GAL-, PACAP-, 
CGRP-, and CART-IR intrahepatic nerves, the nerves 
were counted using a microscopic observation field 
(0.1 mm2). Nerves immunoreactive to SP, GAL, PACAP, 
CGRP, and CART were counted in four sections of the 
liver per animal (in five randomly selected observation 
fields per section) and the obtained data was pooled 
and presented as a mean ± standard error of the 
mean (SEM). The nerve fibres were visualised under 
an Olympus BX51 microscope equipped with epi-flu-
orescence and appropriate filter sets. The obtained 
results were pooled and presented as a mean ± SEM. 
To prevent double counting of the same nerves, the 
sections of liver evaluated during the present study 
were located at least 100 μm apart. Statistical anal-
ysis was carried out via Student’s t test (Graphpad 
Prism v. 6.0; GraphPad Software Inc., San Diego, CA, 
USA). The differences were considered statistically 
significant at p ≤ 0.05.

RESULTS
All neuronal markers showed increased expression 

at the currently recognised legally “safe” level set by 
the European Union. The majority of these markers 
were statistically significant. At a concentration of 

Table 1. List of primary and secondary antibodies used in this study

Antisera Code Host species Dilution Supplier

Primary antibodies

CART H-003-61 Rabbit 1:22000 Phoenix Europe 
www.phoenixpeptide.com

SP 8450-0505 Rabbit 1:10,000 Biogenesis Inc. 
www.biogenesis.co.uk

CGRP 11189 Rabbit 1:10,000 MP Biomedicals 
www.mpbio.com

GAL RIN7153 Rabbit 1:10,000 Peninsula Labs, US; see Bachem AG 
www.bachem.com

PACAP IHC 8922 Rabbit 1:20,000 Bachem AG 
www.bachem.com

Reagent Dilution Supplier

Secondary antibodies

Biotinylated goat anti-rabbit immunoglobulins 1:1000 E0432, DAKO Corporation, US 
www.dakousa.com

Biotin conjugated F(ab)’ fragment of affinity Purified anti-rabbit IgG (H+L) 1:1000 711-1622, BioTrend, Germany 
www.biotrend.com 

CY3-conjugated Streptavidin 1:9000 016-160-084, Jackson IR Lab, US 
www.jacksonimmuno.com

CART — cocaine and amphetamine regulated transcript; CGRP — calcitonin gene regulated peptide; GAL — galanin; SP — substance P; PACAP — pituitary adenylate cyclase activating 
polypeptide

http://www.phoenixpeptide.com
http://www.mpbio.com
http://www.bachem.com
http://www.bachem.com
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ten times higher than what is considered to be le-
gally “safe”, all neuronal markers showed a marked 
increase and all were statistically significant. The 
method used to determine these statistics consisted 
of determining the number of nerve fibres found in 
the field of view during the microscopic examination 
of the three animal groups, as described above. The 
results are tabulated in Table 2. 

The increase of SP+ nerve fibres was not statis-
tically significant at legally-established safe levels. 
However, there was an increase at this level of expo-
sure as compared to the control. At an exposure ten 
times higher than what is legally recommended, SP+ 
nerve fibres increased to a statistically significant level. 
The increase of GAL+ nerve fibres was dramatic and 
statistically significant in all cases. PACAP+ expression 
was also very dramatic and statistically significant 
in all cases. The increase of CGRP+ nerve fibres was 
not statistically significant at legally-established safe 
levels. However, CGRP+ nerve fibres did increase 
with statistical significance when BPA exposure was 
increased to 10 times the recommended limit. The 
increase of CART+ nerve fibres in innervated hepatic 
sections increased dramatically at exposure levels 
deemed legally safe under current European Union 
legislation (including legally safe for children). At 
an exposure ten times higher than what is recom-
mended, CART+ expression further increased. Both 
of the CART+ results were statistically significant. 
Representative images of the immunofluorescence 
studies are shown in Figure 1.

DISCUSSION
Knowledge of the innervated liver, in terms of its 

anatomy and physiology, is quite recent. The first 

in-depth articles describing hepatic intrinsic nerves 
have only been published in the last 35 years [25, 31, 
32]. There have been quite a few studies that have 
investigated neuronal “gut-brain” markers; however 
as far as we can tell from the literature, this is the first 
study investigating changes in hepatic immunoreac-
tive nerve fibres after BPA exposure. 

It has been observed that the main reaction of the 
nervous system in response to toxic substances is to 
change the level of neuronally active substances [36]. 
Therefore, this study chose to examine five neuronal 
markers and test their immunoreactivity against control 
values. Out of several dozen neuronal markers which 
have been found in neuronal cells and nerve fibres [25, 
58], the five factors chosen for this research were found 
to play key roles in the nervous system as “gut-brain” 
peptides, since they have been observed quite often in 
the nerve fibres of the digestive system. Markers such as 
CGRP, SP, GAL, PACAP and CART have been investigated 
in earlier studies of nerve-fibres. SP and CGRP have been 
found to be active in cerebrovascular regulation [23, 
37], and are known to be spinal afferent markers [19, 
37]. However, SP has been used far more extensively. 
SP has been shown to be associated with inflammatory 
diseases, nociception and depression [42, 50]. GAL has 
been associated with enhancing the effects of norep-
inephrine and is a neuromodulator that affects the 
production of hepatic glucose [53]. Furthermore, GAL 
has been linked with juvenile onset diabetes mellitus 
[13, 49]. There have been correlations made between 
PACAP and the proper metabolism of glucose, appetite 
control and food intake [39, 40]. Recent studies have 
shown a statistically significant correlation between 
PACAP and behavioural/psychological disorders, in-
cluding: stress-related illnesses, memory impairment, 
hyperactivity, and even PTSD [21, 22, 48]. A neural 
marker that shows great similarity to PACAP is CART. 
Several articles have shown a correlation between CART 
and appetite control, food intake, and the regulation of 
lipids in adipose tissue [1, 5, 38]. A recent publication 
has shown a linkage between diabetes mellitus and 
altered values of CART [11]. 

Three neurochemical peptides showed significant 
upregulation. They were CART, GAL and PACAP. The 
number of CART+ nerve fibres were extremely altered 
and showed drastic upregulation after legally recom-
mended safe dosages. Given the serious pathological 
trends documented in the literature, these drastic 
increases of CART+ nerve fibres at recommended safe 
exposure levels should be of great concern. GAL+ 

Table 2. The change in the expression of neuropeptides in 
intrahepatic nerves after bisphenol A (BPA) exposure while 
under physiological conditions

Neurochemical 
characteristic

Groups of animals

CTRL E1 E2

CART+ 1.2 ± 0.58 4.2 ± 1.06 8.6 ± 2.0

SP+ 1.4 ± 0.51 2.2 ± 0.86 3.6 ± 1.61

CGRP+ 2.0 ± 0.44 3.0 ± 1.05 5.8 ± 1.24

GAL+ 0.6 ± 0.41 3.8 ± 1.39 5.6 ± 1.81

PACAP+ 2.0 ± 0.71 7.8 ± 0.86 9.2 ± 2.56

CART — cocaine and amphetamine regulated transcript; CGRP — calcitonin gene regu-
lated peptide; CTRL — control animals; E1 — experimental group I (low-dose BPA gro-
up, 0.05 mg/kg bw/day for 28 days); E2 — experimental group II (high-dose BPA group, 
0.5 mg/kg bw/day for 28 days); GAL — galanin; SP — substance P; PACAP — pituitary 
adenylate cyclase activating polypeptide
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Figure 1. Representative images of immunofluorescent detection of SP-, GAL-, PACAP-, CGRP- and CART-immunoreactive nerve fibres in the 
liver of control pigs (A) or pigs exposed to low (B) or high dose (C) of bisphenol A; abbreviations — see Table 2.

nerve fibres were also significantly upregulated at 
recommended safe levels, and show a rather dramatic 
increase. Incorrect levels of GAL have been indicated 
in problems with energy metabolism in children, 

including diabetes mellitus, as previously mentioned 
[13, 49, 53]. PACAP showed dramatic upregulation at 
recommended safe exposure levels as well. PACAP has 
been shown to increase activity within the pituitary 
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gland. Therefore, altered levels of PACAP in the central 
nervous system (CNS) tend to show pathophysiologies 
associated with psychiatric disorders [48]. Further 
research should be performed to investigate what 
these dramatically upregulated neural chemicals may 
be doing to the peripheral nervous system (PNS).

It has been documented that CART may control 
metabolism via the CNS, mainly through the proper 
functioning of appetite regulation [1, 5, 11, 17, 38, 
43, 58]. Thus, altered CART+ nerve fibres could be 
contributing to increased weight gain in children 
and young adults. Furthermore, this could help to 
explain the correlation between CART and diabetes 
mellitus [11] due to the fact that the homeostasis 
of glucose levels is controlled by the liver. However, 
further research would need to be performed to verify 
such a claim. CGRP has been linked with metabolic 
regulation and is a powerful vasodilator [19, 37]. 
Increased CGRP+ nerve fibres could be contributing 
to childhood diabetes and obesity by way of the 
same mechanisms discussed above for CART+ nerve 
fibres [1, 5, 11, 17, 38, 43, 57, 58]. However, further 
research would need to be performed in order to 
verify that hypothesis as well as better understand 
the mechanisms. GAL+ nerve fibres were drastically 
upregulated as well, and have been shown to cause 
altered metabolism in similar ways to CART and CGRP 
[13, 50, 53]. GAL also has a role in sleep regulation 
and cognition [15, 35]. The dramatic increases in 
GAL+ nerve fibres point toward problems with ener-
gy metabolism and cognition problems. Since these 
three neural peptides showed significantly marked 
upregulation in hepatic nerve fibres, it is not unrea-
sonable to hypothesize a connection between the 
correlative studies and what has been observed here. 

Bisphenol A exposure and childhood obesity have 
been significantly correlated [54], and a cross-sectional 
study of school children in China has also correlated 
BPA exposure with increased body mass index [57]. The 
studies have shown a statistically significant correla-
tion between the concentration of urinary BPA and an 
increase of body mass index; not to mention obesity, 
in adolescents and children. It could be possible that 
CART, CGRP and GAL upregulation may be contribut-
ing to these correlative studies of BPA and childhood 
metabolic disorders. Further studies with regards to 
the mechanisms of how this may occur need to be 
performed. Some studies have already begun [28, 44, 
61]. Other studies have shown an altered regulation 
of metabolic gene expression to be the mechanism 

behind how these markers are correlated with diabe-
tes and obesity in children [12, 33, 41, 52]. Detailed 
mechanisms are currently not available, but there are 
too many correlation studies to be ignored. Since the 
liver is a vital organ important for the homeostasis of 
energy levels; one can only speculate, but with some 
confidence, that there is a connection between correl-
ative studies of bisphenol exposure and altered metab-
olism; and the very large increases of CART+, CGRP+ 
and GAL+ hepatic nerve fibres observed in this study. 

Substance P was also investigated in this study. SP 
is known to amplify most cellular processes. Altered SP 
concentrations have been associated with increased 
excitation in vivo [15, 29, 30]. Although the increased 
number of SP+ nerve fibres was not statistically signif-
icant at legally recommended safe levels, it did show 
an increase. Furthermore, at a 10-fold higher than 
recommended concentration of BPA, the upregula-
tion was statistically significant. Therefore, bisphenol 
exposure may be increasing the expression of SP which 
may further enhance the effects of the other gut-brain 
neuropeptides. However, at this time no mechanisms 
are available, and a causative relation is only conjecture. 
This is the major limitation of this study. Bisphenol 
research is so new that there are very few mechanistic 
studies available. Unfortunately, the mechanisms are 
extremely complex, but it is hoped that this type of 
research may be a starting point for more research.

CONCLUSIONS
This particular xenoestrogen (BPA) is literally found 

everywhere today and perhaps even a majority of par-
ents still do not know about the dangers of bisphenol 
exposure [2–9]. Therefore, it is our recommendation 
to lower the suggested safe levels of bisphenol ex-
posure, and to further increase the awareness of the 
public about the potential dangers of bisphenol — 
especially in relation to children and young adults.
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