The possible protective effect of L-arginine against 5-fluorouracil-induced nephrotoxicity in male albino rats

Authors: Mohamed H. Badawoud, Eman B. Elshal, Azza I. Zaki, Hanan A. Amin

DOI: 10.5603/FM.a2017.0037
Article type: ORIGINAL ARTICLES
Submitted: 2017-02-17
Accepted: 2017-04-03
Published online: 2017-04-19

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
The possible protective effect of L-arginine against 5-fluorouracil-induced nephrotoxicity in male albino rats

Mohamed H. Badawoud¹, Eman B. Elshal², Azza I. Zaki¹³, Hanan A. Amin¹⁴

¹Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia;
²Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
³Department of Anatomy, Faculty of Medicine, Alexandria University, Egypt
⁴Department of Histology, Faculty of Medicine, Cairo University, Egypt

Address for correspondence: Dr. Eman Badawi Elshal, MSc, MD, Associate Professor of Anatomy, Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt, tel: +201092889189, fax: 0020223868017; e-mail: emanelshal15@yahoo.com

ABSTRACT
5-fluorouracil (5-FU) is a potent antineoplastic agent used for the treatment of various malignancies. The L-arginine nitric oxide (NO) pathway involved in the pathogenesis of chemotherapy induced kidney damage. This work investigated the beneficial mechanism of L-arginine supplementation in 5 FU induced nephropathy. Eighty male Wistar rats were divided into four equal groups: Control group; L-arginine group (378 mg/rat/day for 4 weeks); 5-FU group (189 mg/rat/week for 4 weeks) and L-arginine for one week before and 4 weeks concomitant with 5-FU group. At the end of experiment, the kidney functions were assessed and kidneys specimens were processed for paraffin sections and stained with H&E, Masson’s Trichome and PAS stains. Immunohistochemical demonstration of caspase-3 for apoptosis and inducible nitric oxide synthase (iNOS). Image analyzer was used to analyze the results morphometrically and statistically analyzed. L-arginine administration to 5-FU treated animals elicited significant reduction
in serum urea and creatinine levels, urine volume, urinary protein excretion and kidney/body weight ratio in comparison to fluorouracil treated group. L-arginine improved glomerulosclerosis, degeneration of convoluted tubules and interstitial fibrosis in 5-FU treated animals. L-arginine attenuated effectively some biochemical and histological changes in 5-fluorouracil nephrotoxicity.

Key words: L-arginine, nephrotoxicity, 5-fluorouracil

INTRODUCTION

Anticancer drugs under ideal circumstances would eliminate cancer cells without damaging normal tissues. However, no agents now available are completely devoid of toxicity [11]. 5-fluorouracil (5-FU) is regarded as the widespread agent in the management of colorectal cancer [13] and it’s got activity against many solid tumors, including cancers in the breast, stomach, pancreas, esophagus, liver, head and neck, and anus [11]. Although, 5-fluorouracil generated acceptable outcome, it was considered a nephrotoxic compound [25]. Moreover, it is a pyrimidine fluorinated analogue and classified as being an anti metabolic agent that inhibits the synthesis of both DNA and RNA in normal and tumor cells [42].

L-arginine is really a semi essential amino acid and is thought to be a principle source for nitric oxide (NO) generation through NO synthase (NOS) [29]. This temporary molecule (NO) may play a crucial role in regulating kidney function in normal and pathological conditions [14]. Three nitric oxide synthase NOS isoforms have been expressed in the kidney [16]. Endothelial NOS (eNOS) has a role in regulation of renal blood flow. Neuronal NOS (nNOS) is found mainly in the macula densa and has a role in secretion of renin. Inducible NOS (iNOS) is found in the kidney in pathologically affected mesangium and tubules [33]. The physiological importance of iNOS in kidney tubules is unclear [15].

In many studies exogenous L-arginine may protect renal tissue against toxic or ischemic injury [39]. L-arginine/NO pathway defects are already suggested to have a main role in the pathogenesis of kidney affection. The renoprotective effect of L-arginine was postulated due to increased total renal blood flow and nitric oxide content [28].
Although there are many experimental studies have been performed on the renoprotective effect of L-arginine with conflicting results, there are limited studies were done on histological and immunohistochemical basis of this effect.

Based on all previous observations, the present study investigated on biochemical, histological and immunohistochemical basis, the possible beneficial influence of L-arginine on nephrotoxicity caused by 5-FU administration in rats.

MATERIALS and METHODS

Ethical approval

The procedures were conducted in accordance with guidelines and protocols reviewed and approved by the ethical committee for animal care and use in King Fahd Medical Research Centre (KFMRC), KAU, Jeddah, Saudi Arabia, which are in accordance with the guidelines of the Canadian Council on Animal Care.

Drugs:

A. 5-fluorouracil (Biosynth Company): was supplied in the form of ampoules of 250 mg and intraperitoneally injected at 189 mg/rat/week [18, 34].

B. L-arginine was purchased from Sigma-Aldrich Chemicals Co. (St. Louis, Missouri, USA). L-arginine solution was prepared by dissolving 40 g of L-arginine in 100 mL normal saline to obtain concentration of 378 mg /0.9 mL and orally given. The calculated dose of L-arginine was based on preliminary data from [5, 31] being nephroprotective.

Animals:

Eighty adult male Wister albino rats (190-210 gm) were chosen for the study. They were maintained under normal laboratory conditions, and were received free access of normal laboratory chow and water adlibitum. Rats were acclimatized for a week before beginning the experiment.

Experimental protocol:
Rats were randomly divided into 4 groups (20 rats each):

Group I (control group): received intraperitoneal injection (IP) of normal saline solution (3.78 ml/week) for 4 weeks [18, 34].

Group II (L-arginine group): received oral L-arginine (378 mg/rat/day) for 4 weeks [5, 31].

Group III (5-fluorouracil group): received IP of 5-fluorouracil (189 mg/rat/week) for 4 weeks [18, 34].

Group IV (L-arginine group + 5-fluorouracil group): was treated with L-arginine (378 mg/rat/day) starting one week before 5-fluorouracil which was given at the same dose, route and period similar to group III.

By the end of treatment, blood samples were collected from the tail vein of experimental groups and as well as the serum was separated from each sample for assessing the kidney function and biochemical study (serum total proteins, albumin, urea and creatinine levels). Also the urine volume (mL/24 hours) and urinary protein excretion (mg/24 hrs) were estimated.

Absolute and relative kidney weight:

The mean weight of the rats was recorded then sacrificed by decapitation. The animals were dissected and their kidneys were separated and weighed. Absolute and relative organ weights were determined.

Histological and Immunohistochemical Techniques:

The right kidneys were separated and immediately fixed in 10% buffered formalin and processed for preparing histological sections 5µm thick. They were stained with hematoxylin and eosin (H&E) and Masson’s trichrome (MT) stains and Periodic Acid Schiff’s reaction (PAS) [8].

Other sections were immunohistochemically stained by avidin biotin peroxidase method for detection of caspase-3 and i NOS expression [7]. Briefly, sections were deparaffinized, hydrated and then incubated overnight with the mouse monoclonal
primary antibody to caspase-3 (Ab-7, Mouse Mab. MS.) at a dilution of 1:500 or rabbit polyclonal primary antibody specific for iNOS enzyme (SC-650, Santa Cruz Biotechnology) at a dilution of 1:1000. Using a universal detection kits (Dakocyntomation), biotinylated secondary antibodies form a complex with peroxidase conjugated streptavidin molecules. Sections were rinsed in phosphate buffered saline and few drops of biotinylated secondary antibodies were applied for 15 minutes. Then, sections were rinsed and treated with the prepared diaminobenzidine tetra-hydro chloride (DAB) substrate chromogen solution for 15 minutes until the desired brown colour obtained. Finally, sections were counterstained with Mayer’s haematoxylin.

Morphometric Studies:

Morphometric measurements were done using Image-Pro Premier system. Glomerular sclerosis was assessed as incremental degrees of PAS positive materials, obliteration of capillary lumina and the presence of amorphous hyaline material and scored based on the criteria of Romero et al. [35]. A minimum 40 glomeruli were randomly examined in every specimen with a magnification of X400 using Image-Pro Premier image analysis software. Sclerosis involving greater than 80% in the glomerular tuft was considered global, and sclerosis involving lower than 80% was considered segmental. Data are expressed as being the percentage of glomeruli showing segmental or global sclerosis.

The average percentages of scored histopathological lesions of renal tissues such as tubular damage and atrophy, tubulo-interstitial infiltration and interstitial fibrosis were recorded according to the criteria of Romero et al. [35]. The degree of injury includes five scores depending on the ratio of affected area to the total area of the section in the field of vision – 0: affected area < 10%, 1: 10% < affected area < 20%, 2: 20% > affected area < 40%, 3: 40% > affected area < 60%, 4: 60% < affected area < 80%, 5: affected area > 80%. The mean score from 10-15 sections of each specimen were recorded. The area percent of caspase-3 and iNOS immuno-stained slides was studied and compared among the different groups used in this study. The area percent of the
immunostaining was measured in 10 microscopic fields (original magnification, X200) for every animal and the mean values were calculated.

Statistical analysis:

Comparison between different groups was statistically done using one way analysis of variance (ANOVA) and then by multiple comparison test to evaluate the main difference between various groups. Differences were considered statistically significant when P<0.05.

RESULTS

Effect on body weight (BW), kidney weight (KW) and relative kidney weight to body weight (KW/BW): (Table 1)

Fluorouracil treated rats (group III) had significantly lower BW than controls. However, L-arginine administration to fluorouracil treated rats (group VI) was significantly heavier than the untreated fluorouracil rats. There was no significant difference between L-arginine (group II) and control groups.

Moreover, a significant increase in KW was shown in fluorouracil treated group. Animals co-treated with both L-arginine and fluorouracil showed a significant reduction in KW in comparison with fluorouracil treated group (group III).

There was a significant increase in (KW/BW) ratio in the fluorouracil group (P<0.05). L-arginine treatment in group IV decreased KW/BW ratio compared to fluorouracil group as shown in table (1).

Biochemical changes:

Effect on serum total proteins, albumin, urea and creatinine levels:

Table (2) illustrates serum total proteins, albumin, urea and creatinine levels of fluorouracil-treatment with or without L-arginine. Fluorouracil-treatment exhibited a considerable increase of serum urea and creatinine levels comparing with apparent
depletion of serum total protein and albumin contents. However fluorouracil -treated
group protected by L-arginine supplementation possessed marked amelioration but was
still below the normal value.

Effect on urine volume (ml/24 hours) and urinary protein excretion (mg/24 hrs)
(Table. 3):

In experimental group treated with fluorouracil, there were a detected increase in
24 hours urine volume and total urinary protein in comparison with control. However, L-
arginine-treatment of fluorouracil-intoxicated rats led to marked amelioration but was
still not matched with the control.

N.B. No significant difference was detected between control untreated and L-arginine
treated controls at all parameters.

Histological results:

Group I (control group):

The control kidney possessed normal histological architecture by examination of
H&E stained sections of kidneys of this group showed that the renal corpuscle was
formed of a glomerular tuft of blood capillaries surrounded by the Bowman’s capsule
which had a parietal layer lined with simple squamous epithelium and inner concave
visceral layer lined by round podocyte cells with deeply stained nuclei. In between the
two layers there was a capsular space or (urine space). The proximal convoluted tubules
had narrow lumen occupied by striated brush borders and a regular basal lamina lined
by a single layer of pyramidal cells with eosinophilic cytoplasm and central rounded
nuclei. Distal convoluted tubules lined by a relatively large number of cuboidal epithelial
cells. The lumens of the distal tubules were wider than the proximal tubules and their
cytoplasm was less acidophilic and the nuclei were rounded (Fig.1A).
Collagen fibers were found to be of minimal amounts and were confined to the
Bowman’s capsule, around the tubules and basal laminae of glomerular capillaries
(Fig.1B).

PAS positive materials were seen in the basement membrane of renal tubules in
addition to the brush border of the proximal convoluted tubules. Intraglomerular PAS positive material was also detected (Fig.1C).

Group II (L-arginine group):

The renal architecture in L-arginine treated animals exhibited normal histological architecture with no changes was detected in this group as compared to group I (Fig.2A). Collagen fiber distribution and PAS positive areas were also similar to control sections (Figs.2B, 2C).

Group III (Fluorouracil group):

In fluorouracil treated rats, areas of glomerular and tubular degeneration were seen among apparently normal ones. The epithelial lining of the affected tubules possessed either pyknotic or vacuolated degeneration. Their tubular lumina appeared swollen with the presence of cellular debris. Hyaline casts were also observed within some tubular lumina (Fig.3A). There were different patterns of glomerular damage such as glomerular atrophy, lobulation and glomerular sclerosis. Intersititial and periglomerular leukocytic infiltrations were detected (Figs.3B, 3C). Dilated and congested glomerular capillaries were also seen (Fig.3A). The renal cortex and medulla exhibited multiple congested capillaries, interstitial mononuclear cellular infiltration and extravasated blood cells (Figs.3B, 3C).

Masson trichrome stained sections revealed increased intraglomerular and peritubular collagen fibers (Fig.3D).

The glomerular mesangium was mostly expanded by increase of intraglomerular PAS positive material. Some tubules showed strong PAS reaction in their basal laminae while others revealed weak PAS reaction in their brush border. Few areas of interstitial tissue showed intense reaction (Fig. 3E).

Group IV (L-arginine + fluorouracil group):

L-arginine supplementation to fluorouracil-treated group, showed improvement majority of renal corpuscles had narrow urinary space, regular glomerular cellularity. The proximal convoluted tubules cells showed vesicular rounded basal nuclei with acidophilic
granular cytoplasm and characteristically narrow lumen. The distal convoluted tubules showed less acidophilic cytoplasm and characteristically wide lumen. (Fig.4A). Normal pattern of collagen fibres in the Bowman’s capsule and around the tubules (Fig.4B) and PAS positive staining structures were detected in the glomeruli in the basement membrane of the parietal layer of Bowman’s capsules, in the basement membrane of renal tubules and in the brush border of the proximal convoluted tubules (Fig.4C).

Inducible nitric oxide and caspase 3 immunohistochemistry

Inducible nitric oxide (iNOS) was immunohistochemically detected in the cytoplasm of the tubular cells in control group. Higher expression was seen in fluorouracil treated group (group III) which was decreased by co-treatment of fluorouracil and L-arginine in renal tissues. No detectable difference was seen between group II (L-arginine group) compared to control rats (Figs. 5A-5D).

Caspase 3 immunohistochemistry showed nearly negative staining affinity in control and L-arginine-treatment. However in experimental group treated with fluorouracil, there was an apparent increase of caspase 3 cytoplasmic expression, and these was markedly reduced in fluorouracil-treated group supplemented L-arginine (Figs. 6 A-D).

Quantitative Morphometric Results

The quantitative morphometric histological results are summarised in table 4. In group III (fluorouracil treated rats), 13.8% of glomerular tuft area was segmentally sclerosed and 2.0% was globally sclerosed. L-arginine treatment (Group VI) decreased significantly the glomerulosclerosis compared to Group III.

Tubular degeneration and atrophy, interstitial cell infiltration and interstitial fibrosis were demonstrated at a mean score of 4.2, 1.7 and 1.2 respectively in group III (fluorouracil group). L-arginine (group IV) significantly decreased the mean score of these lesions. Meanwhile, no significant difference was detected between groups; II and IV and the control group.
The mean area percent of iNOS immunostaining in control sections was 4.112±0.703. It significantly increased in group III (Fluorouracil group) to 18.549±1.34. However, nonsignificant difference was found in groups II (L-arginine Group) and IV (L-arginine + fluorouracil group) in comparison to control rats; 4.624±0.112 and 5.391±0.230 respectively. Moreover, the mean area percent of Caspase-3 immunoexpression indicated a highly significant increase in group III (12.8±1.17) in comparison to control rats (2.5±0.92) and a significant decrease in group IV (7.3±0.51) in comparison with group III.

DISCUSSION

Fluorouracil (5-FU) is a widely used chemotherapeutic drug, due to its efficacy in varieties of human malignancies, however, it has hepatotoxic and nephrotoxic side effects [21]. This organ toxicity is coupled with increased oxidative stress and apoptosis [34]. Therefore, the current work studied the possible protective effect of L-arginine treatment as a nitric oxide precursor against 5-FU induced nephrotoxicity.

In the present work, animals dissection showed that the decrease in body weights induced by 5-FU might be due to loss of skeletal muscles and adipose tissue. This suggestion was also reported by Devlin et al. [19]. In addition, a significant rise in relative kidney weight to body weight was in agreement with the results recorded by Saleh and El-Demerdash [37]. This increase in reno-somatic index might be due to the edema of renal parenchyma caused by renal inflammation [2].

The biochemical findings in this work were in agreement with those obtained by El-Hoseany [20] and Rashid et al. [34] who reported that 5-FU administration led to impairment in kidney function as shown by increase in creatinine and urea and a significant reduction in total serum proteins and albumin. Nephrotoxicity induced by 5-FU was confirmed by histological changes including glomerular and tubular degeneration. Homogenous eosinophilic casts were seen in some tubules. Dilated and congested glomerular capillary loops were frequently observed. Obtained results are similar to those recorded previously by Ali and Al Moundhri [4] and Rashid et al. [34]. They confirmed that 5-FU and cisplatin severely impaired renal function.
Presently, treatment with L-arginine starting one week before 5-FU, apparently reduced its deleterious effects and protected the kidney from damage. This protection was clearly reflected by a significant decrease in kidney weights and in kidney weight relative to body weight and a rise in total serum proteins and albumin. Also, serum urea and creatinine returned nearly to its normal levels. These findings were also reported by Abo Zeid et al. [1]. The authors postulated that L-Arginine treatment as a NO precursor caused a significant improvement of kidney functions in various forms of acute and chronic renal injury. The inductive effects of L-arginine might be due to a change in the level of endogenous nitric oxide. This effect was reported to protect against drug induced nephrotoxicity such as cyclosporine [31] and gentamycin [14] as well as in unilateral ureteral obstruction [26].

NO is synthesized from L-arginine by three different isoforms of nitric oxide synthases (NOSs): neuronal (nNOS), inducible (iNOS) and endothelial nitric oxid synthase (eNOS). As NO has no specific receptors, its function and activity in the different pathophysiological conditions mainly depend on the site and concentration of its production and the surrounding mediators. It has a central function in neurotransmission, inflammatory processes and in the regulation of angiogenesis and vasodilatation [36].

Our immunohistochemical and morphometric results showed that iNOS was minimally expressed in normal renal tissue and highly expressed in damaged proximal tubule epithelial cells in 5FU treated group. The present study attempted to clarify the consequence of modulation of iNOS on the extent of 5-FU induced nephrotoxicity by using L-arginine as a nitric oxide precursor.

Many studies showed that iNOS is low or not expressed in normal renal tissues, whereas several nephropathies were associated with substantial amounts of iNOS in the glomeruli and the renal interstitium [9,12, 24, 22,41]. Other studies, however, indicated that iNOS is expressed in large amounts in the normal renal tissue, localizing mainly in the tubules, and that pathologic conditions, such as clinical and experimental chronic renal insufficiency, are associated with marked iNOS down regulation [3, 44,6]. One possible reason for this disagreement is the wide heterogeneity of the experimental models studied so far. Additional discrepancy may arise from the fact that the primary antibodies used to detect iNOS come from several sources, because the behavior of
different antibodies directed against NOS isoforms can vary dramatically according to type (monoclonal versus polyclonal), species in which the antibody was raised, and tissue in which the antibody is tested [17].

Schneider et al. [38] recorded that the histological changes induced by 5-FU might be related to the deprivation of internal L-arginine available for synthesis of NOS and subsequent uncoupling of constitutive NOS that triggers iNOS induction. The high expression of iNOS can be attributed to the compensatory increase in its level trying to increase the NO level to counteract the deleterious effect of 5-FU on the kidney. However, iNOS protein, once induced, produces large amounts of NO for a sustained period. This NO acts as a free radical and causes cytotoxicity in a variety of cells or tissues [15]. In the present work L-arginine improved the histological changes and consequently diminished the expression of iNOS compared to 5-FU group.

Schwartz et al. [40] reported that up-regulation of iNOS may lead to down-regulation of eNOS which is responsible for maintaining physiologic renal functions. The iNOS rapidly reacts with superoxide (O2-), resulting in the formation of the highly reactive oxidant peroxynitrite (ONOO-) rather than NO under conditions of absolute or relative L-arginine deficiency [45, 32]. Lipid peroxidation and DNA damage induced by iNOS [30]. Thus L-arginine treatment in the present work could protect against the tubular and glomerular histological changes by inhibiting iNOS activity and preventing the formation of ONOO- free radicals and consequently prevents the DNA damage induced by 5-FU.

5-FU caused strong caspase-3 immunostaining in the renal parenchyma. However, L-arginine treatment significantly attenuated apoptosis in both glomerular and tubular region by inhibiting caspase-3 activation. Therefore, L-arginine plays an important role in modulating oxidative stress and apoptosis induced by 5-FU. These results were concluded by Thant et al. [43] and Rashid et al. [34] who reported that apoptosis elicited by 5-FU is a caspase-dependent process that includes activation of the initiator active caspase-9 in addition to effector caspase-3. Many researchers suggested that these changes are due to the free radical generation released in lipid peroxidation, cell membrane damage and apoptosis [46].
Several studies proposed a link between the anti-apoptotic effect of L-arginine was secondary to the prevention of the formation of peroxynitrite anions in the renal tissue [27, 23, 10].

In conclusion, administration of L-arginine was found to be powerfully protective in the model of nephropathy seen in fluorouracil treated rats. L-arginine has a tendency to preserve most of morphological, immunohistochemical and biochemical parameters towards normal values. Human trials are essential to prove this protective role.

Acknowledgement this project was funded by the Deanship of Scientific Research (DRS), King Abdulaziz University, Jeddah, under grant no.(1433/140/386). The authors, therefore, acknowledge with thanks DSR technical and financial support. Principal investigator, Prof. Mohammed H Badawoud.

AUTHOR CONTRIBUTION:
Badawoud MH1, El-Shal EB2, Zaki AI1, 3, Amin HA1, 4

All authors are sharing in design of the work, performed the immunohistochemistry, designed the study, analyzed with interpretation of data for the work and drafted the manuscript. All authors have read and approved the final manuscript.

REFERENCES

25. Isaka Y, Rakugi H. Severe adverse effects of 5-fluorouracil in S-1 were lessened by haemodialysis due to elimination of the drug. NDT Plus. 2009; 2(2), 152-154. DOI: 10.1093/ndtplus/sfn195

37. Saleh S, El-Demerdash E. Protective Effects of L-Arginine against Cisplatin-Induced Renal Oxidative Stress and Toxicity: Role of Nitric Oxide. Basic &

Table (1): Body Weight, Absolute and relative kidney weight (KW/BW) of fluorouracil-treatment with or without L-arginine

<table>
<thead>
<tr>
<th>Group</th>
<th>Body Weight (gm)</th>
<th>Kidney Weight (gm)</th>
<th>KW/BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>295.5 ± 3.4</td>
<td>1.18 ± 0.10</td>
<td>0.40 ± 0.02</td>
</tr>
<tr>
<td>Group II</td>
<td>303.0 ± 6.1</td>
<td>1.15 ± 0.08</td>
<td>0.38 ± 0.04</td>
</tr>
<tr>
<td>Group III</td>
<td>218.5 ± 5.3*†</td>
<td>1.67 ± 0.09*†</td>
<td>0.76 ± 0.05*†</td>
</tr>
<tr>
<td>Group VI</td>
<td>283.9 ± 5.4#</td>
<td>1.26 ± 0.09#</td>
<td>0.44 ± 0.03#</td>
</tr>
</tbody>
</table>

Data are represented as mean ± SD (n=6) P<0.05 was considered significant
* A significant change in comparison to control (Group I)
† A significant change comparison to L arginine group (Group II)
A significant change comparison to fluorouracil group (Group III)

Table (2): Renal function markers of rats treated with fluorouracil with or without L-arginine

<table>
<thead>
<tr>
<th></th>
<th>Albumin (g/dl)</th>
<th>Total Proteins (g/dl)</th>
<th>Creatinine (mg/dl)</th>
<th>Urea (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>3.42 ± 0.13</td>
<td>6.0 ± 0.3</td>
<td>0.62 ± 0.20</td>
<td>33.62 ± 0.13</td>
</tr>
<tr>
<td>Group II</td>
<td>3.47 ± 0.17</td>
<td>7.0 ± 0.5</td>
<td>0.65 ± 0.07</td>
<td>33.57 ± 0.17</td>
</tr>
<tr>
<td>Group III</td>
<td>2.13 ± 0.18*†</td>
<td>4.1 ± 1.5*†</td>
<td>1.10 ± 0.12*†</td>
<td>85.13 ± 0.18*†</td>
</tr>
<tr>
<td>Group VI</td>
<td>3.35 ± 0.04#</td>
<td>7.3 ± 1.1#</td>
<td>0.75 ± 0.06#</td>
<td>35.33 ± 0.04#</td>
</tr>
</tbody>
</table>

Data are represented as mean ± SD (n=6) P<0.05 was considered significant
* A significant change in comparison to control (Group I)
† A significant change comparison to L arginine group (Group II)
A significant change comparison to fluorouracil group (Group III)

Table (3): Urine Volume and Urinary Proteins Excretion in rats treated with fluorouracil with or without L-arginine:

<table>
<thead>
<tr>
<th></th>
<th>Urine Volume (ml/24hours)</th>
<th>Urinary Proteins (mg/24 hours)</th>
</tr>
</thead>
</table>

19

<table>
<thead>
<tr>
<th>Group</th>
<th>Glomerular sclerosis</th>
<th>Tubular degeneration & atrophy (0-5)</th>
<th>Interstitial infiltration (0-5)</th>
<th>Interstitial fibrosis (0-5)</th>
<th>The mean area percent of iNOS</th>
<th>The mean area percent of caspase3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal (%)</td>
<td>Segmental (%)</td>
<td>Global (%)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Group I</td>
<td>98.1±0.5</td>
<td>1.9±0.13</td>
<td>0.0</td>
<td>4.11±0.7</td>
<td>2.5±0.92</td>
<td></td>
</tr>
<tr>
<td>Group II</td>
<td>97.3±2.1</td>
<td>2.7±0.02</td>
<td>0.0</td>
<td>4.62±0.11</td>
<td>3.8±0.02</td>
<td></td>
</tr>
<tr>
<td>Group III</td>
<td>84.2±4.1</td>
<td>13.8±3.2*†</td>
<td>2.0±1.0*†</td>
<td>18.55±1.34*†</td>
<td>12.8±1.17*†</td>
<td></td>
</tr>
<tr>
<td>Group IV</td>
<td>96.8±1.7</td>
<td>3.2±0.04*†</td>
<td>0.0</td>
<td>5.39±0.23*</td>
<td>7.3±0.51*</td>
<td></td>
</tr>
</tbody>
</table>

Data are represented as mean ± SD (n=6) P<0.05 was considered significant
* = p<0.05 in comparison the control group (Group I)
†= p< 0.05 in comparison the L arginine treated group (Group II)
#= p< 0.05 in comparison with the fluorouracil treated group (Group III)

FIGURE LEGENDS

Figure 1. Photomicrographs of sections in the kidney of a control rat (group I) showing:
(A) normal renal architecture: glomerulus (G), proximal (P) and distal (D) convoluted
tubules H&E, scale bar = 20 µm; (B) normal distribution of collagen fibers in the
glomerulus (G), Bowman’s capsule and surrounding the tubules (arrows) Masson's trichrome, scale bar = 50 µm; (C) strong periodic acid-Schiff (PAS) reaction in the glomeruli (G), brush border of the proximal convoluted tubules (P), basal lamina (arrows) of tubules PAS, scale bar = 20 µm.

Figure 2. Photomicrographs of sections in the kidney of L-arginine treated rat (group II) showing: (A) normal pattern of renal architecture H&E, scale bar = 20 µm; (B) normal distribution of collagen fibers in the glomeruli, and surrounding the tubules Masson's trichrome, scale bar = 50 µm; (C) strong periodic acid-Schiff (PAS) reaction in the glomeruli (G), brush border of the proximal convoluted tubules (P) and basal laminae of tubules (arrow) PAS, scale bar = 20 µm.

Figure 3. Photomicrographs of sections in the kidney of a fluorouracil treated rat (group III) demonstrating: (A) dilated and congested glomerular capillary loops (G) and vacuolization of tubular epithelial cells (T). Homogenous eosinophilic casts are seen in some tubules (arrows) H&E, scale bar = 20 µm; (B) dilated and congested blood vessels and interstitial hemorrhages (arrows) H&E, scale bar = 100 µm; (C) extensive interstitial mononuclear infiltrating cells (IF) surrounding destructed tubules H&E, scale bar = 50 µm; (D) increased intraglomerular and peritubular collagen deposition Masson's trichrome, scale bar = 50 µm; (E) increased intraglomerular PAS positive material. Most of PCT shows weak reaction in their brush border (P) with focal interstitial strong reaction (IT) PAS, scale bar = 20 µm.

Figure 4. Photomicrographs of sections in the kidney of a rat co-treated with fluorouracil and L-arginine (group IV) showing: (A) within normal renal architecture H&E, scale bar = 20 µm; (B) within normal distribution of collagen fibres in the glomerulus, Bowman’s capsule and surrounding the tubules Masson's trichrome, scale bar = 50 µm; (C) strong PAS reaction in the glomeruli (G), brush border of the proximal convoluted tubules (P), basal laminae of tubules (arrows) PAS, scale bar = 20 µm.

Figure 5. Photomicrographs of sections in the kidneys of (A) a control rat (group I) showing very weak immunostaining of iNOS; (B) L-arginine treated rat (group II)
showing mild positive immunostaining; (C) a fluorouracil treated rat (group III) showing increased area of strong positive iNOS immunostaining; (D) a rat co-treated with fluorouracil and L-arginine (group IV) showing moderately iNOS positive immunostaining. iNOS, scale bar = 20 µm.

Figure 6. Photomicrographs of sections in the kidneys of (A) a control rat (group I) showing nearly negative immunostaining of caspase3; (B) L-arginine treated rat (group II) showing very weakly positive immunostaining; (C) a fluorouracil treated rat (group III) showing darkly stained areas of positive immunoreactions; (D) a rat co-treated with fluorouracil and L-arginine (group IV) showing lightly stained areas of immunostaining. caspase3, scale bar = 50 µm.