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The aim of this paper was to summarise the knowledge about the autonomic 
cardiac innervation. It is generally known, that the cardiac nervous system consists 
of nerve plexoganglionic structures located mostly around the strategic regions 
of the heart. They consist of two main types of components: parasympathetic 
neurons, which exert an inhibitory effect, and sympathetic postganglionic nerve 
fibres, which stimulate the cardiac conduction system, and myocardial cells. How- 
ever, many authors describe that cardiac ganglia contain various populations of 
neurons. The largest group are classical cholinergic neurons. The second group 
of cardiac neurons are cells of dual, cholinergic-adrenergic character. There is also 
subpopulation of small intensely fluoroscent cells of typically adrenergic phenoty-
pe. Moreover, many authors indicated the presence of various neurotransmitters 
in various combinations. In this way, the neurons in cardiac ganglia are a neuro-
chemical complex beyond the classical vision of parasympathetic ganglia. (Folia 
Morphol 2015; 74, 1: 1–8)

Key words: heart innervations, cardiac neurons, neurochemical 
characteristic

INTRODUCTION
Scientists have been interested in the issue of car-

diac nerves for over 200 years. The first paper on the 
topic appeared already in 1794 [Scarpa, in: 33]. Since 
then, the problem has been studied and described for 
many amphibian, reptile, bird, and mammal species. 
Such strong interest in cardiac nerve structures is due 
to their important function: they regulate the function 
of the cardiac conduction system, the heart rhythm, 
and coronary circulation [56, 65]. 

It is known that, initially, the heart develops in-
dependently from its nerve system. In humans, it 
starts contracting already in the 21st–22nd day of 
development. It is only during the 5th week of de-
velopment, however, that neural crest cells begin 
migrating to the heart [22]. The nerve system of 
the heart includes three types of nerves: sympathe-
tic, parasympathetic, and sensory. Sensory cardiac 
nerves originate in the sensory ganglionic cells of 
the vagus nerve (nodose ganglion), which originate 
in the ectodermal plate (vagus nerve placodes) [31]. 

Sympathetic nerve fibres originate from sympathetic 
trunk cells in the thoracic segment, while neurons 
of the trunk come from the neural crest in the tho-
racic segment [31]. Parasympathetic nerves origina-
te in the ‘cardiac component’ of the cranial neural 
crest. Cardiac ganglia that constitute second order 
parasympathetic neurons migrate directly from the 
neural crest of the heart. A little later, preganglionic 
neurons (the parasympathetic nucleus of the vagus 
nerve) gain access to the heart (through contact with 
cardiac ganglia cells) via the vagus nerve [22, 31]. 
According to the results of studies by Hasan [22] and 
Woźniak et al. [66], several important phases can be 
differentiated in the development of the autonomic 
heart nerves: (a) neural crest cells migration to the 
dorsal aorta, (b) differentiation of neural crest cells 
into neurons, (c) aggregation/migration of neurons 
to form either the paravertebral sympathetic chains 
or the parasympathetic cardiac ganglia, (d) extension 
of axonal projections into cardiac tissue and terminal 
differentiation.
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The migration of cells from neural crests is condi-
tioned by factors of the trophic glial line, mostly by 
the glial cell line-derived neurotrophic factor, relea-
sed in the area of the dorsal aorta and along large 
blood vessels [22]. Other trophic factors of the bone 
morphogenetic proteins are also known; they are 
produced in the area of the dorsal aorta and influence 
the phenotype of neural crest cells [66]. It has been 
demonstrated that the parasympathetic cardiac inner-
vation in the embryonic development of rats and birds 
slightly precedes sympathetic innervation, and neuro-
effector transmission for the parasympathetic system 
is established at stage E21 (transmission significantly 
greater in the atria than in the ventricles) [22]. The 
results of studies by Navaratnam [44] demonstrate 
that true cholinesterase first appears in the cytoplasm 
of the cardiac nerve cells in man between the 4th and 
7th month of gestation. In the rat it appears at about 
the 4th day of postnatal life, in the rabbit between 
the 24th and 27th day of gestation and in the guinea 
pig about the 30th day. On the other hand, Marvin 
et al. [40] found that the activity of acetylcholine 
synthesis enzymes in rats appears on the 19th day of 
development.

Today, it is generally known that the autonomous 
nervous system, a system of plexoganglia, is crucial 
for the cardiac nervous system. It consists of two 
types of components: sympathetic, which stimulate 
the cardiac conduction system and myocardial cells, 
and parasympathetic, which exert an inhibitory effect 
[7, 45, 64]. Sympathetic cardiac nerves come mainly 
from both stellate ganglia as well as from the supe-
rior cervical ganglion, middle cervical ganglion, and  
10 thoracic ganglia [24, 45, 64]. Sympathetic neurons  
primarily utilise norepinephrine as their principal neu-
rotransmitter, although other neuropeptides, such 
as neuropeptide Y (NPY) and galanin (GAL) are also 
co-released from sympathetic terminals. Among other 
functions, NPY and GAL decrease acetylcholine release 
from adjacent parasympathetic terminals [22]. 

Studies using retrograde tracing carried out on 
various animal species lead to the determination of 
neurons projecting axons to the heart (the conduction 
system, cardiomyocytes, and coronary vessels) and 
thus the identification of their location [28, 35, 42, 
52, 64]. In cats, most cardiac neurons were located in 
the stellate ganglion (2679 cells, on average) and in 
the ipsilateral ganglions of segments C8–T9 (213 cells, 
on average) [35]. Hasan [22] presents similar data: as 
much as 92% of neurons determined retrospectively 

were found in the stellate ganglion. Hopkins and 
Armour [28] on the other hand, observed a large 
number of marked neurons in central cervical ganglia 
on both sides of the sympathetic trunk following inje-
ction into the heart, aorta, and cardiac sac in dogs. 
Cranial parts of bilateral stellate ganglia were the 
secondary location of neurons. They also appeared 
sporadically in upper cervical ganglia and in small 
ganglia along cardiopulmonary nerves. Wallis et al. 
[64] demonstrated that the stellate ganglion is the 
main source of cardiac innervation in dogs. Nerves 
also originated from the area of T1 and T2 segments. 
These authors also described the morphology of pu-
tative cardiac neurons. They are oval or polygonal in 
shape with a surface of about 463 µm2. Their axons 
are not divided, and the dendritic tree is diversified, 
usually consisting from 7 dendrites. The results of stu-
dies by Mo et al. [42] were similar. Moreover, authors 
found that the neurons include both phasic and tonic 
ones, and they were depolarised due to the effect of 
muscarine antagonists: angiotensin and substance 
P (SP). Richardson et al. [52] observed that ‘cardiac 
neurons’ in the stellate ganglion of rats were located 
along the medial edges of those ganglia. They also 
demonstrated that ganglia formed 4 neurochemical 
populations of neurons demonstrating immunore-
activity (IR) to: (a) both calbindine (CALB) and NPY;  
(b) only CALB; (c) only NPY; (d) no reactivity to CALB or 
NPY. These results may indicate the existence of vario-
us functional groups of sympathetic cardiac nerves.

The results of studies by Hopkins et al. [28] with 
the injection of horseradish peroxidase to specific 
areas of the heart in dogs suggest that postganglionic 
sympathetic neurons which project efferent axons to 
a specific cardiac region are not located in a specific 
region of a sympathetic ganglion or a specific sym-
pathetic ganglion. Rather, neurons in one region of 
a sympathetic ganglion project axons to widespread 
areas of the myocardium.

Parasympathetic preganglionic fibres come from 
both vagus nerves [24, 37, 41, 45, 64]. Ai et al. [1] 
arrived at interesting results in a study of the cardiac 
nerves of rats using anterograde transport; they sho-
wed that vagal efferent nerve fibres forming baskets 
around cardiac neurons came from the nucleus am-
biguous.

It turns out various neurotrophic factors influence 
the distribution of cardiac nerves. Sympathetic fibres 
are influenced by the nerve growth factor, while pa-
rasympathetic nerves are influenced by neurturin, 
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a factor known for the development of cholinergic 
nerves during organogenesis. However, Mabe et al. 
[37] found that it is also present in the hearts of 
adult rats. Moreover, studies have shown that various 
regions of the myocardium have a nerve system of 
varying degree and density. They found the greatest 
number of cholinergic fibres in the immediate vicinity 
of sino-atrial and atrioventricular nodes. Fibres were 
also found in the area of the ventricular conduction 
system, in the atrial septum, and in the lamina mu-
scularis of the right atrium. The smallest number of 
parasympathetic fibres were found in the lamina 
muscularis of the right ventricle. Similar results were 
also obtained by Hoover et al. [26], who studied the 
heart of the guinea pig, and Yasuhara et al. [67], who 
studied the rat.

Cardiac plexuses contain clusters of neurons for-
ming a polymorphic system of cardiac ganglia, con-
nected with bundles of nervous fibres. The shape, 
size, and location of cardiac ganglia vary significantly 
across species. Usually, they form several nerve clu-
sters located in the epicardium, in several regions 
of the heart: the base of the heart as well as in the 
region of the interatrial, coronary, and interventricular 
grooves. Studies have shown that the human heart 
contains an average of 836 ganglia [49]; this trans- 
lates into about 14,000 neurons [5], The heart of  
a pig has 82 ganglia formed by over 1,600 neurons 
[6], while the heart of a dog has about 440 small gan-
glia containing an average of 2,800 neurons, about 
20 medium-sized ganglia containing an average of 
6,400 cells, and 1–3 large ganglia containing over 
44,000 neurons [50]. On the other hand, Yuan et al. 
[68] showed the presence of only about 260 cardiac 
ganglia in dogs. Rodents usually have 20–30 ganglia; 
for example midday gerbils, Egyptian spiny mice, and 
chinchillas have about 30 ganglia [34]. Rysevaite et 
al. [56] found 20 ganglia (formed by about 1,100 
neuronal somata) in mice, while Ai et al. [1] found 
only 18 ganglia. Leger et al. [36] found over 1,500 
neurons creating ganglia in the heart of the guinea 
pig, of which 85% were formed by 20 neurons. There 
are few studies on the subject regarding birds. The 
issue has been described only for the Japanese quail 
— about 90 ganglia [32] — and for the pigeon — 
about 40 ganglia [34]. Some authors suggest that 
the number of cardiac ganglia can be correlated 
with body size and the activity of the heart [34], but 
there is no simple and direct correlation. Moreover, 
the studies of Akamatsu et al. [2] showed that the 

number of neurons in cardiac ganglia changes with 
age. In young rats (aged 3 months) authors observed 
from 50 to 100 neurons in ganglia, which totalled 
to an average of 1,086 neurons, while in rats aged 
20 months an average of 20 neurons per ganglion 
were found. The number of ganglia also decreased to 
245, which is only 21% in comparison with younger 
rats. On the other hand, the average area of neurons 
increased with age from 702 µm2 to 1065 µm2. The 
similar results were found by Batulevicius et al. [9]. 
Given the above results as well as the significant inter-
species and individual variation, one should approach 
the comparative analysis and possible correlations 
very carefully.

TOPOGRAPHY OF CARDIAC PLEXUSES
A precise analysis of cardiac ganglia topography 

shows that they are located in the epicardium, mostly 
around the strategic regions of the heart. In most spe-
cies, they are located around the sino-atrial node, the 
opening of the venae cavae and pulmonary veins as 
well as around the atrioventricular node. The location 
of cardiac ganglia varies significantly across species. 
For example, there are three plexoganglia in mice and 
in rats: (a) around the sino-atrial node, (b) around the 
opening of the left pulmonary vein to the left atrium 
and the opening of the inferior vena cava to the right 
atrium, i.e. in the vicinity of the atrioventricular node, 
and (c) around the opening of the inferior pulmonary 
vein to the left atrium [1]. Kuder and Tekieli [33], 
on the other hand, described two plexoganglia in 
the epicardium of the atria and one plexoganglium 
in the area of the left coronary groove. The largest 
ganglion is located in the cupping between the right 
atrial auricle and the aorta. Two other ganglia are 
located in the area of the right vena cava openings. 
Several ganglia were also observed on the central 
surface of the right atrium. A similar location of car-
diac ganglia was described by Maifrino et al. [38]. In 
a study on mice, Rysevaite et al. [56] also found the 
presence of ganglia spread in the immediate vicinity 
of the vena cava and the pulmonary veins. However, 
they found no ganglia around the coronary groove. 
Cardiac ganglia were located similarly in other spe-
cies: midday gerbil, Egyptian spiny mouse, chinchilla 
[34], rat, and guinea pig [48] and rabbit [57]. In the 
Egyptian mouse, a plexoganglium on the dorsal side 
of the left ventricle, in the immediate vicinity of the 
interventricular groove, was found apart from atrial 
plexoganglia. Horackova et al. [30] found cardiac 
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ganglia in the guinea pig mostly in the atrial septum 
and around the openings of venae cavae to the right 
atrium; they contained 85–90% of neurons, while the 
rest were located individually. The results of studies 
by Singh et al. [60] performed in the hearts of adult 
humans during autopsy or during transplantation 
procedures have shown that the largest populations 
of cardiac ganglia are near the sinoatrial and atrioven-
tricular nodes. Smaller collections of ganglia exist on 
the superior left atrial surface, the interatrial septum, 
and the atrial appendage–atrial junctions. Ganglia 
also exist at the base of the great vessels and the base 
of the ventricles. The right atrial free wall, atrial ap-
pendages, trunk of the great vessels, and most of the 
ventricular myocardium are devoid of cardiac ganglia.

A literature review shows that cardiac ganglia 
were found more rarely in the epicardium of the 
ventricles. This is the case in the Egyptian mouse, the 
pigeon, the Japanese quail [34], and in humans [49]. 
On the other hand, Caralesu and Luis [12] found no 
ganglia in the coronary area in cats. The location of 
cardiac ganglia, mostly in the basal region of the atria 
and in the anterior or posterior interventricular groove 
and the coronary groove, coincides partly with the 
location of the cardiac conduction system. It seems 
that cardiac ganglia in the ventricles are more com-
mon in birds than in mammals. This may be related 
to the different activity and lifestyle of these classes.

MORPHOLOGY OF CARDIAC GANGLIA
There is significant polymorphism, both between 

species and individuals, regarding the shape of car-
diac ganglia. A review of literature shows that they 
can be oval, spherical, fusiform, or elongated. Pauza 
et al. [48] studied cardiac ganglia in several mam-
malian species (rat, guinea pig, dog, and human) 
and, despite this polymorphism, they discerned two 
main morphological types of ganglia: spherical and 
straight (flat). In spherical ganglia, nerve cells were 
densely packed and contained 100–200 neurons. In 
flat ganglia, several neurons were set linearly one next 
to another. Apart from significant variation across 
species, significant individual variation of cardiac gan-
glia is also observed. Pauza et al. [49] describe a range 
of individual variation in the number of ganglia in 
some regions of the human heart, between 0 and 70.  
They consist of several, several dozen, or even several 
hundred neurons, e.g. about 400 in humans [49]. 
In most cases, however, 7–20 cells were observed 

in transverse sections. They take up from a quarter 
to a half of the section area. Neuronal somata have 
a diameter of 17–36 µm, like in most autonomous 
ganglia. Many authors distinguish several morpho-
logical types of neurons in cardiac ganglia. Pauza 
et al. [51], for example, distinguished two neuron 
types in the cardiac ganglia of rats and guinea pigs: 
monopolar, constituting 61.2% of the total, and mul-
tipolar, constituting 38.8%. There were no essential 
morphometric differences between these cell types. 
The authors suggest various functional properties 
of the two neuron types. This is also confirmed by 
the results of a study by Hardwick et al. [21], who 
found two types of neurons in the cardiac ganglia 
of guinea pigs: phasic, constituting about 95%, and 
tonic (the remaining 5%). Horackova et al. [30] also 
found two morphological types of neurons: about 
80% of large neurons, 15–40 µm in diameter, and 
about 20% of the so-called small neurons. Moreover, 
the authors demonstrated the presence of three cell 
subpopulations varying in neurochemical properties. 
Edwards et al. [15], on the other hand, differentiated 
three neuron types in the cardiac ganglia of guinea 
pigs, varying in electrophysiological properties. The 
first type are the so-called S-cells, in which action 
potential is caused by short hyperpolarisation, while 
in types 2 and 3, the potential is created due to pro-
longed hyperpolarisation. The membrane potential 
of type 2 cells (P-cells) was generated very close to 
resting potential, and type 3 cells (SAH cells) differed 
only in that hyperpolarisation was longer than in 
the case of S-cells. The individual cell types differed 
morphologically: S-cells were monopolar, most P-cells 
were bipolar or pseudomonopolar, while SAH-cells 
were multipolar. The authors suggest that the three 
cell types can have various functions in the heart. 
Baptista and Kirby [8] also described the presence of 
cardiac neurons in mammals that varied in size and 
shape. The cells can be multipolar as well as bi- or 
monopolar. Small intensely fluorescent (SIF) cells were 
also present. The presence of the latter is described 
by other authors as well, e.g. Shvalev and Sosunov 
[59], who list three functions of those cells: endocrine, 
chemoreceptive, and interneuronal. Cheng et al. [13] 
presented interesting study results. The authors used 
methods of reverse transport to demonstrate that 
some monopolar or pseudomonopolar cells in the car-
diac ganglia of rats originate in the inferior ganglion 
of the vagus nerve, hence they might be sensory cells.
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NEUROCHEMICAL CHARACTERISTIC  
OF CARDIAC GANGLIA

In accordance to the organisation of the auto-
nomic nervous system (ANS), only parasympathetic 
postganglionic neurons should be found in cardiac 
ganglia. Such was the opinion for many years, and it 
was also confirmed by studies [7, 20, 21]. However, 
numerous studies in recent years have shown that 
the nervous system in the heart of mammals con-
tains populations of immunohistochemically varied 
neurons. There are reports of minimal numbers of 
adrenergic neurons in those ganglia [4, 17, 68]. Many 
authors suggest that ganglionic cardiac neurons are 
heterogeneous and include two main transmitter 
types: cholinergic and adrenergic [23, 30, 61, 65].

As is known, there are functional groups of neu-
rons in the nervous system, in the ANS in particular, 
defined by the particular combination of neurotrans-
mission expression. Such correlation of chemical phe-
notype and neuron function is called chemical coding 
[19]. Many papers have been written on this topic. 
Richardson et al. [53] showed that all main neurons 
in the cardiac ganglia of rats contain acetyltransfe-
rase and NPY. Some neurons also contain nitric oxide 
synthase (NOS) or calcium-binding proteins, or they 
are surrounded by endings containing CALB. The 
authors suggest that this chemical variety of cardiac 
neurons can represent their various functional groups.

Parsons et al. [47] studied the nervous tissue in 
the cardiac septum of the mudpuppy and they found 
that some neurons included dopamine and serotonin 
(5-HT) as well as SP fibres, i.e. immunoreactive fibres 
creating a web around parasympathetic ganglionic 
somata. This was also found by Hardwick et al. [21]. 
Hoard et al. [24] showed that about 30% of choliner-
gic bodies in the cardiac ganglionic neurons of mice 
contain tyrosine hydroxylase (TH), dopamine beta-
-hydroxylase (DBH), and norepinephrine transporters, 
indicating the possibility of catecholamine synthesis 
and metabolism. However, there was no vesicular 
monoamine transporter type 2 in the bodies of cho-
linergic neurons, so there is no possibility of storing 
and releasing follicular noradrenaline. The authors 
believe that noradrenaline can be released from those 
neurons in pathophysiological circumstances. Weihe 
et al. [65] demonstrated neuron subpopulations (abo-
ut 40–50%) with the coexistence of TH or vesicular 
monoamine transporter type 2 and vesicular acetyl 
choline transporter in the cardiac ganglia of rhesus 
monkeys and humans. Forsgren et al. [16] showed 

that some ganglionic cells in the subepicardial gan-
glia in rats revealed IR to DBH and NPY, while they 
were negative to TH, vasoactive intestinal polypeptide 
(VIP), calcitonin gene-related peptide (CGRP), SP, and 
enkephalin. On the other hand, TH-IR was found in 
the so-called SIF cells. Those cells also showed SP-IR, 
and some of them were immunoreactive to DBH 
and CGRP. Hoard et al. [25] studied cultured cardiac 
neurons from adult mice and found that all of them 
were cholinergic in nature and 21% of them were 
immunopositive to TH. 

Moravec et al. [43] found that ganglionic cells in 
epicardial ganglia and around the terminal groove 
(sulcus terminalis) are negative to VIP and TH and 
immunopositive to NPY and DBH. On the other hand, 
the bodies of intramural ganglia located between the 
right and the left branch of the His bundle are highly 
immunoreactive to TH and DBH.

Studies by Steele et al. [62] on the cardiac ganglia 
of guinea pigs showed various neuron subpopula-
tions. Many neurons included somatostatin (SOM) 
with numerous combinations of IR: dynorphin B 
(DYNB), SP, NPY and NOS. There were also nume-
rous small neuron populations containing a combi-
nation of VIP, NPY, DYNB, SP, and NOS. Authors also 
demonstrated that pericellular baskets of sensory 
and sympathetic nerve endings were present around 
ganglionic neurons. They believe it is highly probab-
le that parasympathetic preganglionic transmission 
from the vagus nerve is modified by sympathetic and 
sensory neurons as well as by ganglionic interneurons, 
so that cardiac ganglia are a complex integrating 
neuronal activity rather than transmitting individual 
signals. High SOM concentrations are found in various 
cardiac regions of rats: right atrium, right ventric-
le, and atrioventricular node [14]. Mawe et al. [39] 
also demonstrated NOS expression in 5% of cardiac 
neurons of guinea pigs. This cell subpopulation was 
immunopositive to choline acetyl transferase (ChAT) 
at the same time.

The immunohistochemical characteristic of cardiac 
nerve ganglia in mice showed that 83% of neuro-
nal bodies (of 1,100) were ChAT-positive, while only 
4% were TH-positive [55]. At the same time, 14% 
of ganglia cells were biophenotypic for ChAT and 
TH. Moreover, both transmitters were present inside 
nerves reaching the heart. Most ChAT-IR axons rea-
ched large cardiac ganglia at the base of the heart 
and the opening of the vena cava to the right atrium. 
In turn, most TH-IR fibres reached the dorsal and 
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abdominal part of the left atrium. SP-IR and CGRP-IR 
fibres were also present in the epicardium and inside 
ganglia around the hilum of the heart. SP and CGRP 
peptides are used to define sensory nerves in the 
heart [24]. It turns out that sensory receptors for the 
SP neuropeptide are present not only in neurons, but 
also on the surface of cardiomyocytes and endothelial 
cells. Moreover, studies showed the effect of the SP 
peptide on the depolarisation of cardiac neurons, trig-
gering action potential, and contributing to dilated 
cardiomyopathy as well as to encephalomyocarditis 
and viral myocarditis. SP and CGRP proteins can also 
have a significant counter-regulatory effect in arte-
rial hypertension and blood circulation in coronary 
vessels [24].

Immunohistochemical studies of Horackova et 
al. [30] on the intracardiac ganglia of guinea pigs 
showed that ganglionic neurons can be divided into 
three subpopulations differentiated by size and the 
expression of various transmitters. About 80% of 
neurons located in ganglia had large diameters of 
up to 40 µm, and about 15% had small diameters 
below 15 µm. Both groups were immunoreactive to 
protein gene product 9.5 (PGP 9.5) as well as ChAT-IR, 
TH-IR, VIP-IR, and SP-IR. The remaining small neurons 
(about 5%) were immunoreactive to TR, but not to 
microtubule-associated protein 2 (MAP-2), PGP 9.5, 
ChAT, and NPY. Moreover, about 10–15% of neurocy-
tes that were loosely distributed instead of clustered 
in ganglia showed positive IR to TH, ChAT, VIP, NPY, 
and SP, but not to MAP-2 and PGP 9.5. 

In a study on mice, Maifrino et al. [38] showed 
that about 10% of over 5,000 cardiac neurons, grou-
ped in three regions, were immunopositive to nicoti-
namide adenine dinucleotide phosphatise (NADPH). 
In this subpopulation of neurons, most were mo-
nopolar (79%), but there were also some bi- and 
multipolar neurons. The authors suggest they have 
various functions.

Parsons et al. [46] showed VIP-immunoreactive 
fibres in 70% cardiac ganglia (intrinsic) in guinea 
pigs. VIP occurred together with NOS, while it was 
deficient in ChAT, TH, and SP-positive fibres. On the 
other hand, about 3% of cardiac neurons showed 
the coexistence of ChAT and VIP and well as VIP and 
NOS. The authors also suggest that those fibres come 
from sensory vagal ganglia.

Many studies describing the presence of cocaine- 
and amphetamine-related transcript peptide (CART) 
proteins in cardiac ganglia have been conducted 

recently [10, 18, 19, 53, 54, 58]. The CART neuropepti-
de is also known as an anorexigen from other areas 
in the nervous system, mostly the hypothalamus, 
although there is an increasing number of reports of 
yet another function as a neurotransmitter in the ANS. 
It was found in nerve endings in the gastro-intestinal 
tract and in parasympathetic ganglia. Most authors 
describe the presence of the CART neuropeptide in 
cardiac nerve fibres; however, there are also reports 
of it being found in cardiac neurons. In guinea pigs, 
CART was found in vagus nerve endings in the heart 
and when it was injected in the solitary tract nucleus, 
baroreflex was impaired and bradycardia ensued [58]. 
Calupa et al. [10] demonstrated that most (but not 
all) cardiac ganglia in guinea pigs were innervated 
by nerve fibres immunoreactive to CART. Only few 
neurocytes in cardiac ganglia were positive to CART. 
They also contained ChAT or NOS. Gonsalves et al. 
[19] demonstrated that immunoreactive neurons 
are found in the stellate ganglion and the supe-
rior cervical ganglion and they project to the heart, 
mostly to vasoconstrictor neurons. Hasan and Smith 
[23] found that the sympathetic regulation of the 
parasympathetic neurochemical phenotype and the 
synthesis of neurotrophins can play a role in cardiac 
dysregulation and in other pathophysiological cir-
cumstances. Similar conclusions were reached in the 
study by Armour [3]. The data correspond with the 
results of the study by Hopkins et al. [29]. Studying 
the hearts of patients with ischaemia, the authors 
found that 35% of 473 studied cardiac ganglions 
had pathological lesions identifiable in light and 
electron miscroscopy. Ricardson et al. [54] observed 
IR to CART in 46% of cardiac neuron bodies in rats, 
some of which also contained NOS or calbindin. 
Around ca. 10% of CART-positive neurons, nerve 
endings containing SOM, coexisting with ChAT, were 
found. Somatostatin is a neurotransmitter partici-
pating in cardiac regulation. It was also identified 
as a possible neurotransmitter, which acts together 
with acetylcholine in decelerating the heart action 
in frogs [11]. The inhibitory function of SOM was 
demonstrated in relation to the contraction of the 
myocardium in humans [62]. Day et al. [14] demon-
strated that various regions of the heart in rats (right 
atrium, right ventricle, atrioventricular node) contain 
a high concentration of SOM. Its presence was also 
found in a small number of vagus nerve endings in 
guinea pigs [58] and in numerous cardiac neuron 
subpopulations [62].
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In turn, another endogenous neuropeptide, pitui-
tary adenylate cyclase-activated peptide (PACAP), can 
increase heart excitability. This was demonstrated by 
Tompkins et al. [63] in in vitro studies regarding intrin-
sic cardiac neurons. The exogenous administration of 
this neuropeptide increased the excitability of cardiac 
neurons. The authors suggest that, in vivo, PACAP 
can be released from postganglionic endings of the 
vagus nerve and act to regulate heart excitability. VIP, 
another neuropeptide from the same group as PACAP, 
has a similar effect. The exogenous administration of 
VIP to isolated heart leads to tachycardia, like in the 
case of PACAP [27].

SUMMARY
The above report indicates that cardiac ganglia 

contain various populations of neurons. They are re-
ached by preganglionic parasympathetic fibres from 
both vagus nerves and postganglionic sympathetic 
fibres from the sympathetic trunk, mostly from both 
stellate ganglia, as well as from superior cervical 
ganglion, middle cervical ganglion, and 10 thoracic 
ganglia [24, 45, 64]. Moreover, the cardiac plexus 
also includes sensory fibres in the vagus nerve, ori-
ginating in the inferior ganglion (ganglion nodose) 
and in parasympathetic fibres, originating in spinal 
ganglia [3]. Some authors also describe the presence 
of sensory neurons in cardiac ganglia [3, 13] as well 
as interneurons [41] and sensory fibres coming from 
the nucleus ambiguous [1]. Neurons forming cardiac 
ganglia can be divided into several subpopulations 
varying morphologically, neurochemically, and fun-
ctionally. The largest group are cholinergic neurons, 
releasing acetylcholine as the main neurotransmitter. 
Neurostimulation from those neurons causes the 
hyperpolarisation of cardiomyocytes and the pregan-
glionic inhibition of sympathetic neurotransmitters, 
further leading to the deceleration of heart rate. The 
second group of cardiac neurons are cells of dual, 
cholinergic-adrenergic, character, with acetylcholine 
as a neurotransmitter, but also with the expression 
of enzymes necessary for noradrenaline synthesis, 
but with no ability to store it. These likely play an 
important role in pathophysiological processes. There 
are also small aggregations of SIF cells, of typically 
adrenergic character. The situation is also compli-
cated by colocalisation and cotransmission, that is 
the presence of various neurotransmitters in various 
combinations and representing various functional 
groups (acetylcholine and TH, DBH, ChAT and NPY, 

ChAT and CART, CART and NOS, CART and CALB, as 
well as PACAP and NADPH). It is also possible that 
other substances participate in ganglionic transmission 
and neuromodulation. Therefore, neurons in cardiac 
ganglia are not phenotypically and functionally homo-
genous. They are a neurochemical complex beyond 
the classical vision of parasympathetic cardiac ganglia. 
This is confirmed by various studies, for example by 
the study of Hoard et al. [24], who demonstrated that 
cholinergic nerve fibres in the atria are often superim-
posed on noradrenergic fibres, so mutual ‘listening to 
impulse transmission’ is possible. Therefore, the control 
and regulation of heart rate by the nervous system is 
a complex process, converting and modulating both 
exogenous and endogenous interneuronal information 
that finally reaches cardiomyocytes.
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