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The Achilles tendon (AT) is reportedly the most vulnerable to rupture at the midpor-
tion, a section of relative hypovascularity. It has been postulated that the twisted 
structure of this tendon may constitute a critical factor contributing to increased 
propensity to vascular compromise, decreased regenerative capacity, and rupture 
in the midsection of the AT. In this review, we will give an overview of the most 
relevant research on AT vasculature and twist, and delve into the interplay between 
the two elements in the context of AT disorders. The pertinent body of research 
suggests a considerable variability in tendon twist among individuals, which likely 
constitutes a determining factor in the extent to which vessels coursing along 
and between AT fibres are compressed during contraction-induced elongation of 
the tendon. Consequently, further research is necessary to investigate the precise 
association between tendon torsion and blood flow within the AT. (Folia Morphol 
2024; 83, 3: 565–570)
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tendinopathy

INTRODUCTION
The Achilles tendon (AT) is a large twisted colla-

genous structure spanning from the musculotendi-
nous junction at the distal portion of the triceps surae 
muscle (the gastrocnemius and soleus muscles), down 
to the calcaneal tuberosity, its site of insertion [27, 39] 
(Fig. 1). This tendon facilitates foot plantar flexion, 
undergoing elongation and further torsion during 
contraction of the triceps surae [26]. Despite its size 
and capacity to withstand loads of up to 3500 N [10, 
14], AT disorders, such as rupture and tendinopathy, 
are common phenomena among athletes and also 
the general population [18, 25, 33]. Interestingly, it 
is less frequent among females than males [32]. Most 
injuries are attributed to competitive and recreational 
sport [17]; however, non-sports-related overuse inju-

ries are becoming increasingly more prevalent in the 
general public, leading to decrease of quality of life 
and increased economic burden [20, 21]. 

Reportedly, the majority (80%) of injuries occur in 
the midportion of the tendon [6, 15], corresponding 
to an area of poor vascularity [4]. Given that tendon 
vasculature is a critical factor influencing its mechan-
ical and regenerative properties, many authors have 
concluded that inadequate or impaired tendon vascu-
larity and resultant degenerative changes represent an 
important mechanism responsible for AT injury [41]. 
This has been widely studied in many other tendons 
of the body [13, 24, 28]. The midsection of the AT, 
located at approximately 4–7 cm from the insertion, 
is apparently less densely vascularized by its supplying 
artery, the fibular artery, than the adjacent proximal 
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and distal regions, which receive blood supply from 
the posterior tibial artery [4, 38]. The relative hypox-
ia results in lower potential for regeneration from 
microinjuries due to overuse, in turn making the AT 
more prone to rupture in this region [4]. Radiographic, 
angiographic, and anatomical dissection studies have 
so far provided a great deal of invaluable insight into 
mechanisms underlying midportion AT injury, in addi-
tion to offering clues to potential therapies.

It has been postulated that the twisted structure 
of this tendon may constitute another critical factor 
contributing to increased propensity to vascular com-
promise and rupture in the midsection of the AT [41]. 
An increasing body of research on AT vascularity and 
twist offers insights into the relationship between the 
two factors. In this review, we will give a comprehen-
sive overview of the most relevant research on this 
clinically important topic. 

Achilles tendon vasculature

The AT was initially thought to receive equal con-
tribution from the fibular artery medially and poste-
rior tibial artery laterally, with an anastomotic region 
situated vertically along the midline of the tendon [2, 

37]. This anastomotic plane, a so-called “choke zone” 
[36], served as one of the primary explanations for 
hypovascularity in this region, leading to a decrease 
in the biomechanical performance of the AT [2, 37]. 
Since then, detailed angiographic studies have pro-
vided evidence redefining the vascular distribution 
of the AT. Using angiography, microdissection, and 
histological analyses, Chen and colleagues established 
that the fibular and posterior tibial arteries supply 
distinct transverse territories of the AT: proximal and 
distal sections of the AT are vascularized by the pos-
terior tibial artery, while the midportion is supplied by 
the fibular artery [4]. The researchers discovered that 
the midsection is susceptible to hypoxia and rupture 
not only due to insufficiency of the fibular arterial 
branch, but also due to the adjacent watershed zones, 
areas where capillaries of the fibular and posterior 
tibial arteries anastomose [4, 10]. An immunohisto-
chemical study utilizing antibodies against laminin, 
a component of blood vessel walls, determined that 
the vascular density in the middle section of the AT 
was 28.2 vessels/cm2 [41]. In contrast, the distal and 
proximal regions were 2 and 2.6 times more densely 
vascularized, respectively [41].

Vessels supplying the AT course predominantly 
along its anterior and deep surface, subsequently 
branching into a thin network of vessels within the 
paratenon, a sheath enveloping the tendon [4]. The 
posterior surface, in contrast, is less densely vascu-
larized as the vessels must traverse from the ventral 
side of the AT where they originate. Longitudinally 
oriented vessels which course superficially along the 
tendon and deep between the tendon fibres follow 
the spiralling course of the tendon fascicles in a me-
dial to lateral direction [4]. As such, these vessels 
may rotate and get compressed following torsion of 
tendon fibres [4].

When it comes to genetic susceptibility, alterations 
in the expression of angiogenesis-associated signal-
ling pathways in response to mechanical loading and 
injury have been linked to increased tendinopathy 
risk [31]. Certain isoforms of vascular endothelial 
growth factor A (VEGF-A) have been associated with 
diminished expression of the VEGFA gene, leading to 
decreased circulating VEGF-A levels, impairing vascu-
lar formation and remodelling of extracellular matrix 
following mechanical stress [31].

Wolff et al. [40] argued that the available re-
search describing AT vasculature lacked methodolog-
ical validity, owing to drawbacks of each individual 

Figure 1. Dissected subtendons of the Achilles tendon — posterior 
view. CB — calcaneal bone; MG — medial head of gastrocnemius; 
LG — lateral head of gastrocnemius; SOL — soleus.
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technique used to analyse AT vasculature. As such, 
the findings of poor vascularity were rather due to 
challenges in visualizing the smallest vessels or dif-
ficulties in interpreting the exact localization of the 
vessels in a three-dimensional plane [40]. Combining 
both detailed angiography and anatomic dissection 
of the same specimens, the researchers observed, 
that contrary to prior observations, the alleged avas-
cular midsection receives ample supply from a dense 
network of arterioles, including branches from the 
anterior tibial and posterior tibial arteries [40]. As 
such, they suggested that tendon biomechanics and 
localized stress are the predominant culprits of tendi-
nopathy. Notwithstanding, vessels coursing along 
and through the AT are likely subject to torsion and 
compression during contraction-induced elongation 
of the tendon, potentially threatening the strength 
and viability of the tendon over time, regardless of 
its ample blood supply. 

Tendon twist

When viewed from above, the AT is internally twist-
ed, with clockwise rotation on the left and counter-
clockwise on the right (Fig. 2) [12, 30, 34]. Rotation 
begins approximately 12 to 15 cm proximal to the 
insertion point, reaching maximal twist in the distal 

5 to 6 cm of the tendon [32]. Throughout its course 
toward the calcaneus, the fibres of the tendon may ro-
tate by as much as 211.17° [27], although this degree 
varies to a large extent depending on the individual 
and the subtendon in question. Many previous stud-
ies have reported on the variable degree of AT twist 
and how it determines which fascicles contributing 
to the AT attach at the calcaneal insertion. Cummins 
at al. originally classified the AT into three types de-
pending on the degree of torsion [8]. Specimens with 
the gastrocnemius subtendons occupying the lateral 
two-thirds of the posterior (superficial) layer and so-
leus the medial two-thirds of the anterior (deep) layer 
were classified as Type I (least twist), and observed in 
52%. Type II (moderate twist), with the gastrocnemius 
subtendons occupying the lateral one-half of posterior 
layer and soleus the medial one-half of the anterior 
layer, was observed in 35%. Finally, Type III (extreme 
twist), with the gastrocnemius subtendons occupying 
the lateral one-third of posterior layer and soleus the 
medial one-third of anterior layer, was observed in 
13%. Szaro et al. [34], expanded on this classification, 
distinguishing between insertion sites of the medial 
and lateral heads of the gastrocnemius (MG and LG, 
respectively), as well as the soleus. They demonstrated 
that subtendons from the MG give rise to posterior 
(surface) and lateral AT fibres, while fascicles from the 
LG to anterior (deep) AT fibres [34]. Subtendons from 
the soleus muscle constitute the anteromedial part of 
the AT [34]. In their effort to elucidate inconsistencies 
in reporting of the degree of twist, chiefly by studying 
a larger amount of specimens and separating each 
fascicle more finely, Edema and colleagues reported 
a slightly different classification of the “twist”, which 
was based on attachment to the anterior (deep) layer 
of the calcaneal tuberosity of each muscle tendon [11]. 
In specimens with type I twist, the soleus occupied the 
entire anterior (deep) portion of calcaneal tuberosity 
insertion site, while in those with type III twist, the 
anterior layer of this tuberosity comprised entirely of 
the lateral gastrocnemius subtendons [11]. As such, 
an even greater degree of torsion appeared to exist 
in individuals with the extreme twist type, something 
which was not previously seen by Szaro et al. [34] and 
earlier studies. In this classification, type I twist was 
observed in 50%, Type II in 43%, and Type III in 7% 
[11]. In a subsequent analysis of fetal Achilles tendons, 
Edama et al. [12] reported the AT as Type I in 13%, 
Type II in 77%, and Type III in 10%. The exact angle 
of torsion of each subtendon was further analysed by 

Figure 2. Schematic illustration of the subtendons of the Achilles 
tendon. MG — medial head of gastrocnemius; LG — lateral head 
of gastrocnemius; SOL — soleus; A — anterior; L — lateral; M — 
medial; P — posterior.
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Pękala and colleagues [27]. When classified according 
to the three torsion types, the twist angle was highest 
in specimens classified as type III, intermediate in type 
II and lowest with torsion type I (Tab. 1) [27]. This 
corroborated the findings of Edama et al. that MG 
fascicles course down with the least degree of twist no 
matter which torsion type. Interestingly, by discover-
ing an association between the torsion of the AT and 
femur, Prosenz et al. proposed that the degree of AT 
twist may change over time as a result of age-related 
changes in torsion of the lower limb [30, 35].

Twisting of the tendon fibres is believed to be 
responsible for its elastic properties [1, 32], allowing 
it to stretch up to 4% of its length without failure [16, 
29], and is necessary for reducing stress by balancing 
the distribution of strain within the tendon [9, 23]. 
In spite of this, an area approximately 2–5 cm from 
the insertion site is subject to a significant focus of 
stress, as a consequence of the twist and the shearing 
forces between overlapping tendon fascicles [3, 5, 
10]. This has an important implication with regard to 
the vessels which course within the tendon. Although 
there is high variability, tendon fascicles appear to be 
more twisted in the midportion of the AT, resulting 
in greater compression of vasculature in this region, 
particularly when mechanical strain is applied dur-
ing contraction-induced elongation of the tendon 
[30, 38]. Vascular compression is likely proportional 
to the extent of tendon fascicle twisting, such that 
individuals with more extreme twist (Type III), and 
hence stress concentration, may be at an enhanced 
risk for vascular compromise. Avascularity may in 
turn lead to reduction in tendon strength and the 
potential for regeneration, especially in individuals 
with prolonged isometric contraction of the soleus 
and gastrocnemius [19].

Interestingly, Clement et al. [7] postulated that, in 
runners who overpronate, simultaneous ankle pro-
nation and knee extension during push-off produces 
concurrent internal and external rotatory force on the 

tibia, which as a result exerts a wringing effect on the 
AT and its vasculature. This conclusion was drawn from 
the observation of varus foot alignment accompanied 
by compensatory overpronation at the subtalar joint in 
56% of patients with injury of the AT [7]. The presence 
of tight calf muscles, noted in 38% of the cohort, rep-
resented a further etiological factor for straining of the 
AT tendon during running [7]. In an attempt to com-
pensate for impaired dorsiflexion, these individuals may 
overpronate the foot during push-off. As such, these 
functional deformities may aggravate the avascularity 
of the midsection of the AT. Another study, however, 
observed that overpronation was not associated with 
AT injuries when compared to controls [22]. Instead, 
an association was present for underpronation, which 
was linked to poor shock absorption. As such, a delicate 
balance seems to exist with regard to foot alignment, 
outside of which injuries may occur, as exemplified with 
the wringing effect exacerbating relative avascularity of 
the AT in overpronation, and impaired shock absorption 
of the tendon in underpronation.

In summary, the regional vascularization pattern 
of the AT is a critical factor influencing function, 
resilience, and regenerative capacity of the tendon. 
AT torsion is highly variable among individuals, and 
likely constitutes an important factor in determin-
ing to what extent local blood flow is compromised 
during contraction-induced elongation of the AT. As 
such, further research is necessary to investigate the 
association between tendon twist and blood flow 
within the AT.
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