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ABSTRACT

The Achilles tendon (AT) is reportedly the most vulnerable to rupture at the midportion, a

section of relative hypovascularity. It has been postulated that the twisted structure of this

tendon  may  constitute  a  critical  factor  contributing  to  increased  propensity  to  vascular

compromise, decreased regenerative capacity, and rupture in the midsection of the AT. In this

review, we will give an overview of the most relevant research on AT vasculature and twist,

and delve into the interplay between the two elements in the context of AT disorders. The

pertinent  body  of  research  suggests  a  considerable  variability  in  tendon  twist  among

individuals,  which  likely  constitutes  a  determining  factor  in  the  extent  to  which  vessels

coursing along and between AT fibers are compressed during contraction-induced elongation

of  the  tendon.  Consequently,  further  research  is  necessary  to  investigate  the  precise

association between tendon torsion and blood flow within the AT.
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INTRODUCTION

The  Achilles  tendon  (AT)  is  a  large  twisted  collagenous  structure  spanning  from  the

musculotendinous junction at the distal portion of the triceps surae muscle (the gastrocnemius

and soleus muscles), down to the calcaneal tuberosity, its site of insertion [1, 2] (Fig. 1). This

tendon  facilitates  foot  plantar  flexion,  undergoing  elongation  and  further  torsion  during

contraction of the triceps surae [3]. Despite its size and capacity to withstand loads of up to

3500 N [4,  5],  AT disorders,  such as  rupture and tendinopathy, are  common phenomena

among athletes and also the general population [6–8]. Interestingly, it is less frequent among

females than males [9]. Most injuries are attributed to competitive and recreational sport [10],

however, non-sports-related overuse injuries are becoming increasingly more prevalent in the

general public, leading to decrease of quality of life and increased economic burden [11, 12]. 

Reportedly, the majority (80%) of injuries occur in the midportion of the tendon [13,

14], corresponding to an area of poor vascularity [15]. Given that tendon vasculature is a

critical  factor  influencing  its  mechanical  and  regenerative  properties,  many  authors  have

concluded that inadequate or impaired tendon vascularity and resultant degenerative changes

represent  an  important  mechanism responsible  for  AT injury  [16].  This  has  been widely

studied in many other tendons of the body [17–19]. The midsection of the AT, located at

approximately  4–7  cm from the  insertion,  is  apparently  less  densely  vascularized  by  its

supplying  artery,  the  fibular  artery,  than  the  adjacent  proximal  and distal  regions,  which

receive blood supply from the posterior tibial artery [15, 20]. The relative hypoxia results in

lower potential for regeneration from microinjuries due to overuse, in turn making the AT

more  prone  to  rupture  in  this  region  [15].  Radiographic,  angiographic,  and  anatomical

dissection studies have so far provided a great deal of invaluable insight into mechanisms

underlying midportion AT injury, in addition to offering clues to potential therapies.

It has been postulated that the twisted structure of this tendon may constitute another

critical factor contributing to increased propensity to vascular compromise and rupture in the

midsection of the AT [16]. An increasing body of research on AT vascularity and twist offers

insights  into  the  relationship  between  the  two  factors.  In  this  review,  we  will  give  a

comprehensive overview of the most relevant research on this clinically important topic. 

Achilles tendon vasculature

The AT was initially thought to receive equal contribution from the fibular artery medially

and posterior tibial artery laterally, with an anastomotic region situated vertically along the



midline of the tendon [21, 22].  This anastomotic plane, a so-called “choke zone” [23], served

as one of the primary explanations for hypovascularity in this region, leading to a decrease in

the biomechanical performance of the AT [21, 22]. Since then, detailed angiographic studies

have provided evidence redefining the vascular distribution of the AT. Using angiography,

microdissection, and histological analyses, Chen and colleagues established that the fibular

and posterior tibial arteries supply distinct transverse territories of the AT: proximal and distal

sections of the AT are vascularized by the posterior  tibial  artery,  while  the midportion is

supplied  by  the  fibular  artery  [15].  The  researchers  discovered  that  the  midsection  is

susceptible to hypoxia and rupture not only due to insufficiency of the fibular arterial branch,

but  also  due  to  the  adjacent  watershed zones,  areas  where  capillaries  of  the  fibular  and

posterior  tibial  arteries  anastomose  [5,  15].  An  immunohistochemical  study  utilizing

antibodies against laminin, a component of blood vessel walls, determined that the vascular

density in the middle section of the AT was 28.2 vessels/cm2 [16]. In contrast, the distal and

proximal regions were 2 and 2.6 times more densely vascularized, respectively [16].

Vessels supplying the AT course predominantly along its anterior and deep surface,

subsequently  branching  into  a  thin  network  of  vessels  within  the  paratenon,  a  sheath

enveloping the tendon [15]. The posterior surface, in contrast, is less densely vascularized as

the vessels must traverse from the ventral side of the AT where they originate. Longitudinally

oriented vessels which course superficially along the tendon and deep between the tendon

fibers follow the spiraling course of the tendon fascicles in a medial to lateral direction [15].

As such, these vessels may rotate and get compressed following torsion of tendon fibers [15].

When it comes to genetic susceptibility, alterations in the expression of angiogenesis-

associated signaling pathways in response to mechanical loading and injury have been linked

to increased tendinopathy risk [24]. Certain isoforms of vascular endothelial growth factor A

(VEGF-A) have been associated with diminished expression of the VEGFA gene, leading to

decreased  circulating  VEGF-A levels,  impairing  vascular  formation  and  remodeling  of

extracellular matrix following mechanical stress [24].

Wolff  et  al.  argued  that  the  available  research  describing  AT vasculature  lacked

methodological validity, owing to drawbacks of each individual technique used to analyze AT

vasculature [25]. As such, the findings of poor vascularity were rather due to challenges in

visualizing the smallest  vessels  or difficulties  in interpreting the exact localization of the

vessels  in  a  three-dimensional  plane  [25].  Combining  both  detailed  angiography  and

anatomic dissection of the same specimens, the researchers observed, that contrary to prior



observations, the alleged avascular midsection receives ample supply from a dense network

of arterioles, including branches from the anterior tibial and posterior tibial arteries [25]. As

such,  they  suggested  that  tendon  biomechanics  and  localized  stress  are  the  predominant

culprits  of tendinopathy.  Notwithstanding, vessels  coursing along and through the AT are

likely  subject  to  torsion  and  compression  during  contraction-induced  elongation  of  the

tendon, potentially threatening the strength and viability of the tendon over time, regardless

of its ample blood supply. 

Tendon twist

When viewed from above, the AT is internally twisted, with clockwise rotation on the left and

counterclockwise on the right (Fig. 2) [26–28]. Rotation begins approximately 12 to 15 cm

proximal to the insertion point, reaching maximal twist in the distal 5 to 6 cm of the tendon

[9]. Throughout its course toward the calcaneus, the fibers of the tendon may rotate by as

much as 211.17° [1], although this degree varies to a large extent depending on the individual

and the subtendon in question. Many previous studies have reported on the variable degree of

AT twist and how it determines which fascicles contributing to the AT attach at the calcaneal

insertion. Cummins at al. originally classified the AT into three types depending on the degree

of torsion [29]. Specimens with the gastrocnemius subtendons occupying the lateral  two-

thirds  of the posterior  (superficial)  layer and soleus the medial two-thirds  of the anterior

(deep) layer were classified as Type I (least twist), and observed in 52%. Type II (moderate

twist), with the gastrocnemius subtendons occupying the lateral one-half of posterior layer

and soleus the medial one-half of the anterior layer, was observed in 35%. Finally, Type III

(extreme  twist),  with  the  gastrocnemius  subtendons  occupying  the  lateral  one-third  of

posterior layer and soleus the medial one-third of anterior layer, was observed in 13%. Szaro

et al., expanded on this classification, distinguishing between insertion sites of the medial and

lateral heads of the gastrocnemius (MG and LG, respectively), as well as the soleus [26].

They demonstrated that subtendons from the MG give rise to posterior (surface) and lateral

AT fibers, while fascicles from the LG to anterior (deep) AT fibers [26]. Subtendons from the

soleus muscle constitute the anteromedial part  of the AT [26].  In their  effort  to elucidate

inconsistencies in reporting of the degree of twist, chiefly by studying a larger amount of

specimens and separating each fascicle more finely, Edema and colleagues reported a slightly

different classification of the “twist”, which was based on attachment to the anterior (deep)

layer of the calcaneal tuberosity of each muscle tendon [30]. In specimens with type I twist,



the soleus occupied the entire anterior (deep) portion of calcaneal tuberosity insertion site,

while in those with type III twist, the anterior layer of this tuberosity comprised entirely of

the  lateral  gastrocnemius  subtendons  [30].  As  such,  an  even  greater  degree  of  torsion

appeared  to  exist  in  individuals  with  the  extreme  twist  type,  something  which  was  not

previously seen by Szaro et  al.  and earlier studies. In this classification,  type I twist  was

observed in 50%, Type II in 43%, and Type III in 7% [30]. In a subsequent analysis of fetal

Achilles tendons, Edama et al. reported the AT as Type I in 13%, Type II in 77%, and Type III

in 10% [27]. The exact angle of torsion of each subtendon was further analyzed by Pękala

and colleagues [1]. When classified according to the three torsion types, the twist angle was

highest in specimens classified as type III, intermediate in type II and lowest with torsion

type I (Table 1) [1]. This corroborated the findings of Edama et al. that MG fascicles course

down  with  the  least  degree  of  twist  no  matter  which  torsion  type.  Interestingly,  by

discovering an association between the torsion of the AT and femur, Prosenz et al. proposed

that the degree of AT twist may change over time as a result of age-related changes in torsion

of the lower limb [28, 31].

Twisting of the tendon fibers is believed to be responsible for its elastic properties [9,

32], allowing it to stretch up to 4% of its length without failure [33, 34], and is necessary for

reducing stress by balancing the distribution of strain within the tendon [35, 36]. In spite of

this, an area approximately 2–5 cm from the insertion site is subject to a significant focus of

stress, as a consequence of the twist and the shearing forces between overlapping tendon

fascicles [5,  37,  38].  This has an important  implication with regard to the vessels  which

course within the tendon. Although there is high variability, tendon fascicles appear to be

more twisted in the midportion of the AT, resulting in greater compression of vasculature in

this  region,  particularly  when  mechanical  strain  is  applied  during  contraction-induced

elongation of the tendon [20, 28]. Vascular compression is likely proportional to the extent of

tendon fascicle twisting, such that individuals with more extreme twist (Type III), and hence

stress concentration, may be at an enhanced risk for vascular compromise. Avascularity may

in turn lead to reduction in tendon strength and the potential for regeneration, especially in

individuals with prolonged isometric contraction of the soleus and gastrocnemius [39].

Interestingly, Clement et al. postulated that, in runners who overpronate, simultaneous

ankle pronation and knee extension during push-off produces concurrent internal and external

rotatory force on the  tibia,  which as  a  result  exerts  a  wringing effect  on the AT and its

vasculature [40]. This conclusion was drawn from the observation of varus foot alignment



accompanied by compensatory overpronation at the subtalar joint in 56% of patients with

injury  of  the  AT [40].  The  presence  of  tight  calf  muscles,  noted  in  38% of  the  cohort,

represented a further etiological factor for straining of the AT tendon during running [40]. In

an attempt to compensate for impaired dorsiflexion, these individuals may overpronate the

foot during push-off. As such, these functional deformities may aggravate the avascularity of

the  midsection  of  the  AT.  Another  study,  however,  observed  that  overpronation  was  not

associated with AT injuries  when compared to  controls  [41].  Instead,  an association  was

present for underpronation, which was linked to poor shock absorption. As such, a delicate

balance seems to exist with regard to foot alignment, outside of which injuries may occur, as

exemplified  with  the  wringing  effect  exacerbating  relative  avascularity  of  the  AT  in

overpronation, and impaired shock absorption of the tendon in underpronation.

In  summary,  the  regional  vascularization  pattern  of  the  AT  is  a  critical  factor

influencing function, resilience, and regenerative capacity of the tendon. AT torsion is highly

variable among individuals, and likely constitutes an important factor in determining to what

extent local blood flow is compromised during contraction-induced elongation of the AT. As

such, further research is necessary to investigate the association between tendon twist and

blood flow within the AT.
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MG — medial head of gastrocnemius; LG — lateral head of gastrocnemius; SOL — soleus.

Figure 1.  Dissected subtendons of the Achilles tendon — posterior view. CB — calcaneal

bone; MG — medial head of gastrocnemius; LG — lateral head of gastrocnemius; SOL —

soleus.



Figure 2.  Schematic illustration of the subtendons of the Achilles tendon. MG — medial

head of gastrocnemius; LG — lateral head of gastrocnemius; SOL — soleus; A — anterior; L

— lateral; M — medial; P — posterior.


