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This study was conducted to determine the effect of gestational diabetes on the
neuronal density of CA1 and CA3 subfields of the hippocampus in Wistar rat off-
spring. On day 1 of gestation, 10 dams were randomly allocated into two control
and diabetic groups. Five animals in the diabetic group received 40 mg/kg/b.w. of
streptozotocin (intraperitoneally) and the control animals were received normal sa-
line. Six offspring of each of the gestational diabetics and controls were randomly
selected in postnatal days 7 and 21. The infants were scarified and coronal sections
were taken from the right dorsal hippocampus and stained with cresyl violet. The
number of pyramidal cells per 10000 mm2 area and the thickness of layers of hippo-
campus in CA1 and CA3 were evaluated. In postnatal day 7, the number of pyrami-
dal neurons in CA1 significantly reduced from 118.82 ± 8.0 in the control group to
84.71 ± 3.3 neurons in gestational diabetic group, and in postnatal day 21 it signi-
ficantly reduced from 112.71 ± 6.9 in the control group to 91.52 ± 8.5 in the
gestational diabetic group. Also, the number of pyramidal cells of CA3 on postnatal
day 7 significantly reduced from 90.33 ± 8.1 in the control group to 62.86 ± 7.2 in
the gestational diabetic group, and in P21 the number of pyramidal cells significantly
reduced from 78.33 ± 2.4 in the control group to 61.7 ± 9.5 cells in the diabetic
group. In CA1 and CA3 the thickness of the pyramidal layer on postnatal days 7 and
21 non-significantly increased in gestational diabetics in comparison with the con-
trols. This study showed that uncontrolled gestational diabetes reduces the pyrami-
dal neurons of the hippocampus in rat offspring. (Folia Morphol 2012; 71, 2: 71–77)

Key words: gestational diabetes, hippocampus, pyramidal neuron, rat

INTRODUCTION
Diabetes mellitus is one of the most common

serious metabolic disorders [23] characterised by hy-
perglycaemia and altered metabolism of lipids, car-
bohydrates, and proteins [67].

Type I or insulin dependent, type II or insulin in-
dependent, and gestational diabetes are the three
general classifications of diabetes mellitus [50].

Diabetes mellitus, regardless of its type, is associat-
ed with cerebral alterations in both human and an-
imal models of the disease [12, 23, 42].

These alterations include abnormal expression of
hypothalamic neuropeptidase [18, 60], hippocam-
pal astrogliosis [61], decreased hippocampal syna-
ptic plasticity [34, 41], neurotoxicity, and changes
in glutamate neurotransmission [15, 22, 65]. Dia-
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betic patients are prone to moderate alterations in
memory and learning [21, 59].

The hippocampus is an important structure for mem-
ory processing. It is a particularly vulnerable and sensi-
tive region of the brain that is also very important for
declarative and spatial learning and memory [9].

Recent studies have reported that the process of
neurogenesis including cell proliferation, survival,
migration, and differentiation continues in the hip-
pocampal formation well into adulthood in a varie-
ty of species, including rodents, non-human pri-
mates, as well as humans [14, 24–26, 33].

Evidence for brain disturbances were reported in the
hypothalamus, cerebral cortex, and hippocampus of
streptozotocin (STZ)-induced diabetic rats [11, 33, 53].

Gestational diabetes mellitus (GDM), defined as
impaired glucose tolerance, affects approximately
4% of all pregnant women who have never before
had diabetes but who do have high blood glucose
levels during pregnancy [50], and involves an inter-
action between diabetic susceptibility genes and the
diabetogenic effects of pregnancy [32].

Follow-up studies concerning the adverse effects of
diabetic pregnancy on the developing brain have re-
vealed neurobehavioral deficits in both sensory-cogni-
tive and psychomotor functions. These include altered
auditory recognition memory processing at birth [62],
neurobehavioral deficits [55], reduce visual and memo-
ry performance at 8 and 12 months [17], poorer per-
formance on tests of general development in infants
and toddlers [56], and inferior performance in elemen-
tary school children [29, 48]. While motor delay may be
a sign of mild, non-specific brain damage, the abnor-
malities in memory processing suggest alterations in
hippocampal development and function [45].

Although there are several studies regarding the
adverse effects of type I and type II diabetes mellitus
on central nervous system (CNS) including the hippoc-
ampus, hypothalamus, cerebellum, and cerebrum
[1, 10, 33, 40, 51], there is no study about the effect of
gestational diabetes on neuronal development of the
hippocampus, which is important in spatial learning
and memory. Therefore, this experimental study was
design to assess the effect of gestational diabetes on
neuronal density of CA1 and CA3 of subfields of the
hippocampus in postnatal days 7 and 21 of Wistar rats.

MATERIAL AND METHODS
This experimental study was performed at the

Gorgan faculty of Medicine, Golestan University of
medical sciences, Gorgan, Iran. Guidelines on the
care and use of laboratory animals and approval of

the ethics committee of Golestan University of Medi-
cal Sciences were obtained before the study.

Experimental animals

Wistar rats, weighing 180–220 g (12 weeks old)
were used in this study. The animals were maintained
in a climate-controlled room under a 12-h alternat-
ing light/dark cycle, 20°C to 22°C temperature, and
50% to 55% relative humidity. Dry food pellets and
water were provided ad libitum.

Drug

Streptozotocin (Sigma, St. Louis, MO, USA) was dis-
solved in sterile saline solution (0.85%) to give a 40 mg/
/kg dose intraperitoneally injected to female rats.

Animal groups and treatment

After 2 weeks of acclimation to the diet and the
environment, the female Wistar rats were placed with
a proven breeder male overnight for breeding. Vagi-
nal smears were taken the next morning to check for
the presence of sperm. Once sperm was detected, that
day was assigned as gestational day 1 (GD). On day 1
of gestation, the pregnant rats were randomly allo-
cated into control and diabetic groups.

Five dams in the diabetic group were given
40 mg/kg body weight of STZ and the control groups
(5 dams) were given an equivalent volume of nor-
mal saline, intraperitoneally. Blood was sampled
from the tail at 1 week after STZ injection. The dams
with blood glucose level 120–250 mg/dL were
known as GDM. The pregnancy of dams was termi-
nated physiologically.

On postnatal days 7 and 21, from each mother in
the controls and cases, 1 or 2 male infants were ran-
domly selected. In total 6 offspring of GDM and con-
trol mothers on days 7 and 21 (P7, P21) were randomly
selected and scarificed. For light microscope prepara-
tions, the brain was fixed in 10% neutral-buffered for-
malin for histological procedure. The coronal sections
(6 µm) were serially collected from bregma –3.30 mm
to –6.04 mm of the hippocampal formation [49]. The
sections were stained with cresyl violet.

Blood glucose measurements

Blood glucose levels before mating and after STZ
injection were obtained via the tail vein and were esti-
mated with a glucometer (ACCU-CHEK® Active Glu-
cometer, Roche Diagnostics, Mann-heim, Germany).

Morphometric techniques

For histomorphometric study, the sections were
observed under a light microscope.
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In each postnatal pup, ten similar sections of an-
terior to posterior of the hippocampal CA1 and CA3
subfield were selected and images were taken with
an Olympus BX 51 microscope and DP12 digital cam-
era attached to OLYSIA autobioreport software
(Olympus Optical, Co. LTD, Tokyo, Japan). The num-
ber of pyramidal cells was evaluated in a 10000 mm2

area of a pyramidal layer of the CA1 and CA3 sub-
field at 1000¥ magnification (Figs. 1–3). The thick-
ness (mm) of layers of the hippocampus in CA1 in-
cluded stratum oriens (so), stratum pyramidal (sp),
stratum radiatum (sr), and stratum lacunosum-mo-
leculare (slm) and in the CA3 field it included so, sp,
stratum lucidum (slu), sr, and slm, obtained at 200¥

magnification.

Statistical analysis

Morphometric data is expressed as the mean
± SEM and analysed by the Student’s “t” test using
SPSS 11.5 software. A p value < 0.05 was conside-
red significant.

RESULTS

Blood glucose concentrations and Body weight

The mean ± SEM of maternal blood glucose
concentrations and body weight before mating
and 7 and 21 days after delivery in the GDM and
control groups are given in Tables 1 and 2. Blood
glucose levels showed a significant increase after
injection of STZ in the GDM group in comparison
with the control group (p < 0.05). Maternal body
weight 21 days after delivery significantly in-
creased in GDM in comparison with the control
group (p < 0.05).

Furthermore, infant body weight on the 21st

postnatal day in GDM significantly increased in the
GDM group compared to the controls (p < 0.05)
(Table 3).

Morphometric results

The number of pyramidal neurons in CA1 and
CA3. On postnatal day 7, the numbers of pyramidal
neurons per 10000 mm2 of the pyramidal layer in CA1
significantly reduced from 118.82 ± 8.0 in the control
group to 84.71 ± 3.3 in the GDM group (p < 0.001).

Also, in P21, pyramidal neurons significantly re-
duced from 112.71 ± 6.9 in the control group to
91.52 ± 8.5 in the GDM group (p < 0.001).

The number of pyramidal cells of CA3 on postna-
tal day 7 significantly reduced from 90.33 ± 8.1 in the
control group to 62.86 ± 7.2 in the GDM group

Figure 1. Presentation of hippocampal areas in a control infant rat
(P21). Coronal sections stained with cresyl violet; CA1 — cornu
ammonis 1; CA3 — cornu ammonis 3;  DG — dentate gyrus;
Grid: 500 mm ×500 mm, scale bar: 500 mm.

Figure 3. Hippocampal CA1 subfield in a control infant animal
(P21). CA1 layers included stratum oriens (so), stratum pyramidal
(sp) and stratum radiatum (sr). Arrow shows pyramidal cells;
1000× magnification; Grid: 20 mm ×20 mm, scale bar: 20 mm.

Figure 2. Hippocampal CA1 subfield in a control infant (P21). CA1
layers included stratum oriens (so), stratum pyramidal (sp), stra-
tum radiatum (sr), and stratum lacunosum-moleculare (slm);
Grid: 200 mm ×200 mm, scale bar: 200 mm.
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Table 2. Maternal body weight (gram; mean ± SEM) on the insemination day, 7 and 21 day after delivery in control and
gestational diabetics (GDM)

     Insemination Day Day 7 Day 21

    Control GDM Control GDM Control GDM

192.3 ± 11.8 194.6 ± 8.3 201.6 ± 1.2 197.6 ± 1.4 235.3 ± 7.5 262.5 ± 6.7*

Results are expressed as mean ± SEM of the mean; *p < 0.05; n = 5

Table 1. Maternal blood glucose level (mg/dL; mean ± SEM) on the insemination day, 7 and 21 day after delivery in
control and gestational diabetics (GDM)

   Insemination Day Day 7 Day 21

   Control GDM Control GDM Control GDM

97.7 ± 2.3 97.35 ± 2.2 100.2 ± 2.1 143.2 ± 3.1* 97.5 ± 2.5 141.2 ± 3*

Results are expressed as mean ± SEM of the mean; *p < 0.001; n = 5

(p < 0.001). In P21, the number of pyramidal cells
significantly reduced from 78.33 ± 2.4 in the control
group to 61.7 ± 9.5 cells in the GDM group (p < 0.001).

Thickness of layers in CA1

On postnatal days 7 and 21 the mean thickness
(µm) of the pyramidal layer non-significantly in-
creased in the GDM group compared to the control
group. However, stratum oriens (so) and stratum
radiatum (sr) in P7 were significantly increased in
the GDM group in comparison with the controls
(p < 0.001) (Table 4).

Thickness of layers in CA3

The mean thickness (µm) of the pyramidal layer
in P7 and P21 non-significantly increased in the
GDM group compared to the control group. The
thickness of stratum oriens (so) and stratum lacun-
osum-moleculare (slm) significantly increased in P7
in cases in comparison with the controls (p < 0.05),
whereas the thickness of other layers in cases non-
significantly increased in comparison to the con-
trols (Table 4).

DISCUSSION
The present study demonstrated that gestational

diabetes produces a significant reduction in the py-
ramidal cell density of CA1 and CA3 hippocampal
subfields on postnatal days 7 and 21 in Wistar rats.

This reduction of neurons can be a cause of disability
of learning and memory, which has previously been re-
ported both in human and animal newborns [68]. The
hippocampus is necessary for cognitive function, espe-
cially in processing recognition memory and transform-
ing short-term memory items into long-term storage [43].

Previous studies have shown reduced neuronal
density in animals with type 1 and 2 diabetes melli-
tus [1, 10, 33, 40, 51].

Moreover, animal model studies have shown that
mothers with type 1 and 2 diabetes mellitus born
offspring with low neuronal density in the hippo-
campus [10, 40, 63], catecholaminergic systems of
the hypothalamus [52], granule layer of dentate
gyrus [1], and the cerebrum [35].

In spite of several studies regarding the effects
of diabetes I and II on the CNS, including the hip-

Table 3. Infant body weight (gram; mean ± SEM) on the 7th and 21st postnatal days in gestational diabetics (GDM) and
in controls

P7 P21

    Control GDM Control GDM

12.67 ± 0.2 12.75 ± 0.6 40.84 ± 1.2 46 ± 1.3*

Results are expressed as mean ± SEM of the mean; *p < 0.05; n = 6
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CNS complications of diabetes mellitus could be
mediated through excessive free radical generation
[1, 3, 47, 69]. These radicals contribute to increased neu-
ronal death by oxidising proteins, damaging DNA, and
inducing the lipoperoxidation of cellular membranes [28].

Also, in other passive cellular responses, increased
formation of advanced glycosylation end-products da-
mages endothelial cells; therefore, it is contributed to
vascular damage during hyperglycaemia. Diacylglycer-
ol activation of protein kinase C has a negative effect
on cerebral blood flow and vascular permeability [36].

Indeed, several studies have shown that offspring
of diabetic mothers have lower arachidonic acid
(AA:20:4n-6) and docosahexaenoic acid (DHA:22:6n-3)
in cord blood [20, 44, 66].

AA metabolite and prostaglandin E2 play an im-
portant role in neurogenesis [64]. Zhao et al. (2009)
[68] reported that maternal arachidonic acid supple-
mentation improves neurodevelopment in young adult
offspring from rat dams with and without diabetes.

Also, another possible mechanism in the cause
of program cell death in diabetes mellitus [4–8,
37–39, 46] could be due to decreased insulin or in-
sulin-like growth factor signalling [31] or an increase
in cytokines such as TNFa [16].

Moreover, insulin-like growth factor has a neu-
roprotective anti-apoptotic effect [48], and down
regulation of the expression of insulin-like growth

pocampus, there is no investigation about the ef-
fect of gestational diabetes on hippocampal struc-
tural neurons in offspring.

Our animal model study demonstrated that ges-
tational diabetes similar to type I and II diabetes mel-
litus has a neurotoxic effect on the hippocampus of
offspring. The neurotoxic effect of gestational diabe-
tes is established as significant reduction in the pyra-
midal cell density of CA1 and CA3 hippocampal sub-
fields in the postnatal 7 and 21 days of Wistar rats.

The reduction of pyramidal cell density of CA1
and CA3 hippocampal subfields can be due to pro-
gram cell death or the block of neurogenesis in the
hippocampus [33].

Diabetes mellitus, regardless of its type, is associ-
ated with hyperglycaemia. Several possible mecha-
nisms have been explained regarding cerebral alter-
ations, including neuronal loss of hippocampus due
to hyperglycaemia. Hyperglycaemia induces multiple
cellular responses. These can be considered to be neu-
rologically passive or active cellular responses [36].

Diabetes mellitus is a chronic endogenous stres-
sor that is associated with increased oxidative stress
in CNS, in particular the hippocampus [2, 27]. The
polyol pathway is activated during hyperglycaemia
and leads to consumption of NADPH and depletion
of glutathione, which lowers the threshold for in-
tracellular oxidative injury [36].

Table 4. Mean ± SEM of the thickness (µm) of the various layers of hippocampal subfield (mm) of offspring in postnatal
day (P7, P21) of gestational diabetics (GDM) and controls

Hippocampal region P7 P21

Control GDM Control GDM

CA1

Stratum oriens (so) 95.73 ± 3.6 116.36 ± 2.8* 120.8 ± 5.7 138.3 ± 10.21

Stratum pyramidal (sp) 69.86 ± 5.7 77.15 ± 2.8 55.48 ± 2.9 58.57 ± 4.3

Stratum radiatum (sr) 144.46 ± 7.4 180.76 ± 6.1 149.6 ± 6.5 195.7 ± 15.7

Stratum lacunosum-moleculare (slm) 70.42 ± 4.2 106.42 ± 5.2* 84.26 ± 7.3 79.8 ± 4.1

Total 383.98 ± 13.41 490.6 ± 12.2* 412.26 ± 14.9 473.3 ± 0.5

CA3

Stratum oriens (so) 97.75 ± 8.5 142.0 ± 4.4* 107.4 ± 9.3 141.9 ± 13.5

Stratum pyramidal (sp) 78.80 ± 12.7 84.62 ± 5.7 67.03 ± 8.3 68.53 ± 5.7

Stratum lucidum (slu) 35.29 ± 2.6 43.47 ± 3.1 32.65 ± 2.2 46.8 ± 6

Stratum radiatum (sr) 146.7 ± 13.85 143.1 ± 3.2 122.3 ± 3.8 179.4 ± 5.1

Stratum lacunosum-moleculare (slm) 35.3 ± 0.6 43.46 ± 2.1* 53.22 ± 3.2 46.4 ± 1.7

Total 393.86 ± 21 457.14 ± 12* 382.79 ± 14.8 483.14 ± 25.7

Results are expressed as mean ± SEM of the mean; *compared with control group; p < 0.05; n = 6
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factor and its receptor in diabetes might also be
expected to lead to neuronal loss [40, 57, 58].

Furthermore, several studies have shown that the
damage to both presynaptic and postsynaptic struc-
tures in the hippocampus in diabetes from hyper-
glycaemia induced alterations in the handling and
homoeostasis of intracellular calcium concentrations
[13, 19, 21, 41, 42]. Also, up regulated GLUT-3 trans-
porters, as one of the compensatory responses
aimed at increasing neuronal glucose uptake and
use, is low in diabetes [42, 47].

Anther factor in active response in hyperglycae-
mia is down regulation of nitric oxide synthase (NOS)
mRNA and protein concentrations within hippocam-
pal CA1 and CA3 neurons [54].

This down regulation of NOS mRNA may provide
a partial explanation for the impaired long-term po-
tentiation that is seen in the diabetic hippocampus
because induction and maintenance of potentiation
are dependent on NOS activity, and experimental in-
hibition of NOS decreases long-term potentiation and
impairs cognitive learning and memory [30].

Limitations of the study. The blood glucose con-
centration was not measured in offspring. Although,
this study was done on a small sample size of ani-
mals and thus the findings of this study cannot be
directly used for human risk assessment, it should
be mentioned that uncontrolled gestational diabe-
tes might be related to CNS complications in hu-
man infants.

CONCLUSIONS
This study showed that uncontrolled gestational

diabetes induces a neurotoxic effects on hippocam-
pal pyramidal neurons in rat offspring, which re-
mained persistent during postnatal period. Further
studies are required to explore the exact mechanism
of CNS complications of gestational diabetes.
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