Median nerve thenar motor branch anatomical variations

E. Mizia¹, K.A. Tomaszewski¹, G. Goncerz¹, W. Kurzydło², J. Walocha¹

¹Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
²Institute of Physiotherapy, Jagiellonian University Medical College, Krakow, Poland

[Received 29 March 2012; Accepted 19 June 2012]

Background: The aim of this study was to determine the prevalence of the different types of median nerve thenar motor branch and to compare them with literature data.

Material and methods: This study was conducted using median nerves dissected from cadavers stored in a 10% solution of formaldehyde at the Department of Anatomy of Jagiellonian University Medical College (JUMC) and cadavers from the Department of Forensic Medicine JUMC. The research protocol was approved by the Jagiellonian University Ethics Committee (registry KBET/209/B/2002).

Results: The studied group comprised 8 (26.7%) women and 22 men (age between 23 and 92 years), yielding a total of 60 thenar motor branches (30 right vs. 30 left). Forty-seven (78.3%) nerves were classified as extraligamentous, 12 (20%) were subligamentous, and 1 (1.7%) was transligamentous. As for the side of origin of the thenar motor branch, in 45 (75%) cases it was the radial side and in 2 (3.33%) cases it was the ulnar side.

Conclusions: The obtained results confirm that the extraligamentous type of thenar motor branch is the most common and that the ulnar origin of the thenar motor branch is the rarest. (Folia Morphol 2012; 71, 3: 183–186)

Key words: anatomical variations, median nerve, thenar motor branch, carpal tunnel

INTRODUCTION

The carpal tunnel, located on the palmar surface of the wrist, contains the median nerve, four tendons of the flexor digitorum superficialis, four tendons of the flexor digitorum profundus, and the tendon of the flexor pollicis longus [14]. The median nerve is a mixed motor and sensory nerve [6]. It descends beneath the flexor digitorum superficialis, lying on the flexor digitorum profundus in the forearm, within 5 cm of the transverse carpal ligament, and then it becomes more superficial, situated between the tendons of the flexor digitorum superficialis and the flexor carpi radialis [6]. It lies behind and radial to the side of the palmaris longus tendon just before entering the carpal tunnel [6]. The median nerve is located between the flexor retinaculum and the tendons of the middle finger flexor digitorum superficialis muscle in wrist extension [6].

The median nerve normally divides into six branches at the distal terminus of the flexor retinaculum [6]. These include the recurrent motor branch innervating the opponens pollicis, the abductor pollicis brevis, and the flexor pollicis brevis.

There exist a number of reports describing the congenital anatomical variations of the median nerve thenar motor branch [1, 7, 9, 10]. These studies use the Poisel classification system [13] for describing median nerve variations and the relationships of the
branches to the transverse carpal ligament (TCL). This system divides the variations into three types — the extraligamentous (type I), the subligamentous (type II), and the transligamentous (type III). In the extraligamentous type, the thenar motor branch arises distal to the TCL and then runs a retrograde course to reach the thenar muscles [2, 13]. In the subligamentous type, the branch arises within the carpal tunnel and remains deep to the TCL until it reaches the thenar muscles [2, 13]. In the transligamentous type, the branch arises within the carpal tunnel and then pierces the TCL to reach the thenar muscles [2, 13].

The aim of this study was to determine the prevalence of the different types of median nerve thenar motor branch and to compare them with literature data.

MATERIAL AND METHODS

This study was conducted using median nerve motor branches dissected from cadavers stored at the Department of Anatomy of the Jagiellonian University Medical College as well as cadavers from the Department of Forensic Medicine of Jagiellonian University Medical College. The cadavers were examined bilaterally.

There were no restrictions as to gender or age concerning inclusion into the study. Exclusion criteria included extensive damage to the median nerve preventing proper sample acquisition.

The research protocol was approved by the Jagiellonian University Ethics Committee (registry KBET/209/B/2002).

Dissection technique

The incision was made starting at the distal 1/3 of the forearm, continuing between the tendon of the flexor carpi radialis and the tendon of the palmaris longus muscle, along the thumb flexion line to the proximal intraphalangeal joint. After dissecting the skin and the subcutaneous tissue, the median nerve was exposed and the flexor retinaculum was cut on the ulnar side, by longitudinal incision. Next the median nerve was dissected (in or above the carpal tunnel) together with the motor branches innervating the muscles of the thumb. The existing incision was closed using a running intradermal suture.

Statistical analysis

Statistical analysis was conducted using computer software Statistica 10.0 PL by StatSoft Poland. To analyse the data, elements of descriptive statistics were used (percentage distribution, minimum value, maximum value). To assess differences between proportions, the χ² test (with Yates’ correction for continuity) was used. The significance level was set at p < 0.05.

RESULTS

The studied group comprised 8 (26.7%) women and 22 men (age between 23 and 92 years), yielding a total of 60 median nerve motor branches (30 right vs. 30 left).

Examination showed that 47 (78.3%) nerves were type I according to Poisel (extraligamentous) (Fig. 1), 12 (20%) were type II (subligamentous) (Fig. 2), and 1 (1.7%) was type III (transligamentous). Figure 3 and Table 1 present a comparison of the obtained results with literature data.
The most common side of origin of the median nerve motor branch was the radial side (45 cases; 75%) (Fig. 1). Branching from the ulnar side of the median nerve was found in 2 (3.33%) cases, from the palmar (anterior) aspect in 6 (10%) cases, and between the radial and palmar side in 7 (11.67%) cases. Table 2 presents percentage distribution of the side of origin of the thenar motor branch as compared with literature data.

DISCUSSION

This study presents data obtained from the analysis of median nerve thenar motor branch anatomical variations.

Table 1. Median nerve variations according to Poisel — comparison with literature data

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>Source</th>
<th>Type I (extraligamentous)</th>
<th>Type II (subligamentous)</th>
<th>Type III (transligamentous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisel (1974) [13]</td>
<td>100</td>
<td>Cadavers</td>
<td>46.00%*</td>
<td>31.00%</td>
<td>23.00%*</td>
</tr>
<tr>
<td>Tountas et al. (1987) [15]</td>
<td>821</td>
<td>Intraoperative</td>
<td>81.50%</td>
<td>9.78%</td>
<td>1.30%</td>
</tr>
<tr>
<td>Tountas et al. (1987) [15]</td>
<td>92</td>
<td>Cadavers</td>
<td>96.00%*</td>
<td>2.07%*</td>
<td>1.90%</td>
</tr>
<tr>
<td>Hurwitz (1996) [7]</td>
<td>80</td>
<td>Intraoperative</td>
<td>55.00%*</td>
<td>29.00%</td>
<td>16.00%*</td>
</tr>
<tr>
<td>Kozin (1998) [9]</td>
<td>202</td>
<td>Cadavers</td>
<td>93.00%*</td>
<td>0.00%*</td>
<td>7.00%</td>
</tr>
<tr>
<td>Ahn et al. (2000) [1]</td>
<td>354</td>
<td>Intraoperative</td>
<td>96.10%*</td>
<td>2.80%*</td>
<td>1.10%</td>
</tr>
<tr>
<td>Lindley (2003) [11]</td>
<td>526</td>
<td>Intraoperative</td>
<td>99.20%*</td>
<td>0.20%*</td>
<td>0.20%</td>
</tr>
<tr>
<td>Barbe (2005) [3]</td>
<td>75</td>
<td>Cadavers</td>
<td>64.00%</td>
<td>33.00%</td>
<td>33.00%*</td>
</tr>
<tr>
<td>Beris et al. (2008) [5]</td>
<td>110</td>
<td>Intraoperative</td>
<td>No data</td>
<td>27.30%</td>
<td>No data</td>
</tr>
<tr>
<td>Al-Qattan (2010) [2]</td>
<td>100</td>
<td>Intraoperative</td>
<td>56.00%*</td>
<td>34.00%</td>
<td>9.00%</td>
</tr>
<tr>
<td>Current study</td>
<td>60</td>
<td>Cadavers</td>
<td>78.34%</td>
<td>20.00%</td>
<td>1.66%</td>
</tr>
</tbody>
</table>

*Marks statistically significant differences (p < 0.05) between literature data and the results of the current study.

Table 2. Side of origin of the thenar motor branch — comparison with literature data

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>Source</th>
<th>Radial side</th>
<th>Palmar (anterior) side</th>
<th>Ulnar side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tountas et al. (1987) [15]</td>
<td>821</td>
<td>Intraoperative</td>
<td>95.00%*</td>
<td>3.90%</td>
<td>1.10%</td>
</tr>
<tr>
<td>Tountas et al. (1987) [15]</td>
<td>92</td>
<td>Cadavers</td>
<td>100.00%*</td>
<td>0.00%*</td>
<td>0.00%</td>
</tr>
<tr>
<td>Mackinnon and Dellon (1988) [12]</td>
<td>50</td>
<td>No data</td>
<td>60.00%</td>
<td>22.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hurwitz (1996) [7]</td>
<td>80</td>
<td>Intraoperative</td>
<td>86.25%</td>
<td>12.50%</td>
<td>1.25%</td>
</tr>
<tr>
<td>Ahn et al. (2000) [1]</td>
<td>354</td>
<td>Intraoperative</td>
<td>81.70%</td>
<td>17.20%</td>
<td>1.10%</td>
</tr>
<tr>
<td>Current study</td>
<td>60</td>
<td>Cadavers</td>
<td>75.00%</td>
<td>10.00%</td>
<td>3.33%</td>
</tr>
</tbody>
</table>

*Marks statistically significant differences (p < 0.05) between literature data and the results of the current study.
The incidences of anatomical variations of the median nerve thenar motor branch differ greatly between studies (Table 1). In the current study the most common type (according to Poisel) was the extraligamentous variation. That was also the case in previous studies [1, 2, 7, 9, 11, 13, 16]. In our study only one branch (1.66%) was of the transligamentous type. The percentage of the transligamentous branch varies significantly, from as low as 0.2% [11] to as high as 80% [8]. This could probably be explained easily if the difference existed only between intraoperative and cadaveric studies. But differences also exist between studies acquiring nerves from the same type of source. This invalidates the argument that differences between results of clinical and cadaveric studies may result from broader access to the examined region during autopsy. This also makes obsolete the argument that clinical studies may be biased because the transligamentous course is frequently associated with thenar atrophy [4] and thus a higher incidence of this type could be expected in surgically treated carpal tunnels.

At first the authors thought that a major drawback of this study would be the small number of examined cadavers. But after performing statistical analysis we found that our results do not differ statistically from the results obtained by Tountas et al. [15] on a group of 821 patients (intraoperative study).

When assessing the side of origin of the thenar motor branch, the ulnar aspect seems to be rare in all studies and races (Table 2) [16]. Once again, our result did not differ statistically from the results obtained on larger groups by Ahn et al. [1] (intraoperative study of 354 patients) or Hurwitz [7] (intraoperative study of 80 patients) and only differed slightly from the results obtained by Tountas et al. [15] (intraoperative study of 821 patients).

CONCLUSIONS

In conclusion, the obtained results confirm that the extraligamentous type of the thenar motor branch is the most common and that the ulnar origin of the median nerve motor branch is the least common. This confirms the necessity of approaching the median nerve from the ulnar side when opening the carpal tunnel.

REFERENCES