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Immunohistochemical study of the cholinergic innervation of the hippocampal
calretinin-containing cells was conducted on 28 rat brains of postnatal ages: P0,
P4, P7, P14, P21, P30 and P60. Sections with double immunostaining for vesic-
ular acetylcholine transporter (VAChT; the marker of cholinergic cells, fibres and
terminals) and calretinin were analysed using confocal laser-scanning microscope.
Obtained data demonstrate that during development as well as in adult species
calretinin-containing neurones in the rat hippocampus form sparse synaptic contact
with VAChT-ir terminals. It seems probable that cholinergic innervation is not
crucial for the functioning of CR-ir cells — probably they remain under the greater
influence of a system other than the cholinergic system.
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INTRODUCTION
The hippocampus is involved in the control of

cognitive and emotive behaviour, particularly in
learning and memory [17, 19, 37]. Two main groups
can be distinguished among hippocampal neurones:
principal and non-principal cells. The former include
pyramidal and granule cells, which are excitatory and
convey information between the various hippocam-
pal subfields [2, 9, 25]. Most non-principal cells are
GABAergic and nonpyramidal; they inhibit activity
of principal cells [6, 38]. The population of GABAergic
nonpyramidal neurones is rather heterogeneous in
their morphology, synaptic connections, content of
neuroactive substances and calcium binding proteins
(CaBPs): parvalbumin, calbindin D28k, and calretinin
[25]. CaBPs play a crucial role in the control of the
level of calcium in the cytoplasm, which is thought
to be critical for proper development [3, 18], for in-
stance, for neurite outgrowth [12], neuronal migra-

tion [20, 21], and expression of neurotransmitter
receptors [34].

Hippocampal neurones appear to be the major
target for cholinergic septohippocampal fibres aris-
ing from the medial septum/diagonal band complex
[1, 24]. Their endings are localised on cells in all hip-
pocampal cell layers [10, 11] and the cholinergic sys-
tem seems to be essential for the function of this
structure [4]. Cholinergic septohippocampal neurones
are believed to influence memory and attention pro-
cessing [5, 7]. Furthermore, in developmental pro-
cesses the cholinergic system plays an important role
in the proliferative processes and axon guidance [22,
23]. As a good marker of the cholinergic system two
antibodies were used: anti-ChAT (against the enzyme
synthesising acetylocholine) and anti-VAChT (against
vesicular acetylocholine transporter). The latter pre-
sumably transports ACh into synaptic vesicles to regu-
late release upon stimulation [8, 27, 31]. Unlike ChAT,
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VAChT protein is an integral membrane protein
mainly localised in the synaptic vesicles. Since syn-
aptic vesicles occur in higher concentrations in the
nerve terminals, the anti-VAChT antibody should be
a useful marker of cholinergic synapses as well as in
fibres in all known cholinergic projection fields [29].
In resume, anti-ChAT serves as a better marker for
cholinergic somata and fibres, whereas anti-VAChT
— for cholinergic terminals.

Due to the distinct expression of pattern of CaBPs
during development [18], in the present study we
investigated developmental relationship between
cholinergic innervation and the neurones contain-
ing calretinin (CR) in the hippocampus using immu-
nohistochemical methods. For detection of cholin-
ergic fibres and terminals, we used a specific anti-
body against VAChT [30].

MATERIAL AND METHODS
The material consisted of 28 Wistar rat brains of

various postnatal ages: P0, P4, P7, P14, P21, P30 and
P60. In each group four animals were studied. Care
and treatment of the animals were in accordance
with the guidelines for laboratory animals established
by the National Institutes of Health as well as by the
Local Ethical Committee of the Medical University of
Gdańsk. All animals were deeply anaesthetised with
lethal does of Nembutal (80 mg/kg of body weight),
then transcardially perfused with 0.9% solution of
NaCl with heparin, followed by 4% solution of
paraformaldehyde in 0.1M phosphate buffer (pH 7.4;
50–250 ml). The brains were postfixed in 4%
paraformaldehyde fixative for 3–4 hours, and then
kept in 0.1 M phosphate buffer containing 10% su-
crose (overnight at 4oC) and 30% sucrose (until sunk).

Coronal 40-mm-thick, serial sections of the brain
were cut on JUNG 1800 cryostat (Leica, Germany). The
free-floating sections were blocked for 1 hour with
3% NGS containing 0.4% Triton X-100 and then incu-
bated for 48 hours in 4oC with the mixture of the goat
anti-VAChT and rabbit anti-calretinin antibodies diluted
in 3% NGS (Table 1). After multiple rinses in PBS, sec-
tions were incubated (2–3 hours, at room tempera-
ture) with the mixture of the appropriate secondary
antibodies conjugated with the FITC or Cy3 (Table 1).

The specificity of staining was checked according
to the procedure described by Wouterlood et al. [41].

The histological sections were studied under the
MicroRadiance AR-2 (Bio-Rad, UK) confocal laser-
scanning microscope equipped with an Argon laser
producing dichromatic light at 488 and 514 nm. The
488-nm line of this laser was applied to excite the

fluorescein isothiocyanate (FITC), using a dichroic
beam splitter FT 505 and an emission long-pass fil-
ter LP 515. The 514-nm line of this laser was applied
to excite Cy3, using an excitation filter 514 and an
emission long-pass filter E570LP. For 3D reconstruc-
tion the image analysis program LaserSharp 2000 v.
2.0 (Bio-Rad; UK) was used.

For subdivision of the hippocampal formation we
applied procedures used by Sloviter [32] and Jiang
et al. [18] (Fig. 1).

RESULTS
VAChT-immunoreactivity

In P0 VAChT-immunoreactive (-ir) puncta were
present in both sectors of hippocampus proper
(CA1 and CA3) as well as in the dentate gyrus (DG).
During the first postnatal week the amount of
immunopositive puncta clearly increased and for the
first time VAChT-ir fibres became visible (since P4).
Network of immunoreactive puncta and processes
with varicosities appeared on P14 and since that
time there were no major changes in the distribu-
tion and morphology of VAChT immunoreactivity.
More intense immunoreactivity was observed in the
vicinity of principal cell layers (pyramidal and granu-
lar; Fig. 2, 3, 4). VAChT-ir elements frequently
formed “basket” structures that often surrounded the
CR-immunonegative cells (Fig. 2, 3, 4). During the
whole studied period of postnatal life VAChT-posi-
tive neurones were observed neither in any hippoc-
ampal sector nor in DG.

CR-immunoreactivity
In general, distribution and immunoreactivity of

calretinin containing neurones during postnatal de-
velopment of rat hippocampus were similar to that
previously described [18].

Table 1. Specifications and dilutions of the primary and
secondary antibodies

Antibodies Manufacturers Dilution

Goat anti-VAChT Chemicon 1:1000
(polyclonal)*

Rabbit anti-calretinin Chemicon 1:1000
(polyclonal)*

CyTM3-conjugated Jackson Immuno 1:800
Donkey anti-Goat** Research

FITC-conjugated Jackson Immuno 1:100
Donkey anti-Rabbit** Research

* primary antibodies, ** secondary antibodies
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Figure 2. CR-positive cells (green) and VAChT-positive fibres and terminals (red) in CA1 sector of hippocampus proper at stages: P4 (A),
P7 (B) P14 (C), P21 (D). White arrows indicate VAChT-positive puncta forming synaptic contact with CR-ir neurones; P — postnatal day.

Figure 1. Diagram of the rat hippocampus. Dotted lines separate sector CA1 from CA3 and CA3 from dentate gyrus (DG); SO — stratum
oriens, SP — stratum pyramidale, SR — stratum radiatum, SLM — stratum lacunosum-moleculare, ML — molecular layer of dentate
gyrus, GL — granule cell layer, H — hilus of dentate gyrus, SL — stratum lucidum (from Jiang and Swann [18]).

On P0 CR-immunoreactive elements were observed
in the hippocampus proper (mainly in CA3 sector) and
in the dentate gyrus (Figs. 3A, 4A). In the hippocam-

pus proper CR-ir cells appeared to be located in the
pyramidal cell layer, stratum radiatum and stratum
oriens (Fig. 3A); in the dentate gyrus they were ob-
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served mainly in the hilus (Fig. 4A). Perikarya of the
CR-ir neurones were of various shapes (often fusiform).
They also had sparse short processes (Figs. 3A, 4A).

On P4 the number of CR-ir cells increased, par-
ticularly in CA1 sector of the hippocampus proper
and somewhat in CA3 sector. At this time a new

Figure 3. CR-positive cells (green) and VAChT-positive fibres and terminals (red) in CA3 sector of hippocampus proper at stages: P0 (A),
P4 (B) P7 (C), P14 (D), P21 (E). White arrows indicate VAChT-positive puncta forming synaptic contact with CR-ir neurones; P — postnatal day.
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population of small CR-ir neurones of various
shapes was observed between the stratum
lacunosum-moleculare of CA1 sector and the mo-
lecular layer of dentate gyrus. On P7 these cells
were still present although they were fewer in

number; they disappeared at the end of the sec-
ond postnatal life.

Since P21, the level and distribution of CR immu-
noreactivity did not change significantly. In sector CA1
CR-ir cell bodies were observed mainly in or near the

Figure 4. CR-positive cells (green) and VAChT-positive fibres and terminals (red) in dentate gyrus at stages: P0 (A), P4 (B) P7 (C), P14 (D),
P21 (E); P — postnatal day. White arrows indicate VAChT-positive puncta forming synaptic contact with CR-ir neurones.
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pyramidal layer; their dendrites, often displayed
beaded or varicose features, usually branched in the
stratum oriens and stratum radiatum (Fig. 2D). CR-ir
cells were localised in sector CA3 mainly in pyramidal
layer (Fig. 3E); their dendrites branched locally. In the
dentate gyrus, numerous CR-ir neurones were located
horizontally just beneath the granule cell layer; im-
munoreactive cells were also observed inside the hi-
lus — their processes branched locally (Fig. 4E).

Cholinergic innervation of calretinin positive cells
3D reconstruction of double immunostained sec-

tions has shown that until P4 VAChT-positive puncta
only sporadically formed synaptic contact with CR-ir
neurones (Figs. 3A, 4A). Analysing the relations of
CR-ir cells with VAChT-positive terminals since P7,
two unequal subpopulations of CR-ir neurones seem
to be present: intensively stained neurones devoid
of synaptic contact with cholinergic terminals (Figs.
3C, 4C, E) and somewhat lightly stained neurones
forming sparse synaptic contacts with cholinergic
terminals. The former sub-population predominated.
VAChT-positive endings were observed mainly on CR-ir
somata, rarely on processes (Figs. 2B–D, 3D, E, 4D).
Cells of the above-mentioned sub-populations were
randomly distributed and they were not limited to
any hippocampal region or layer.

DISCUSSION
The distribution and immunoreactivity of CR-ir

cells in the hippocampus during maturation as well
as in the adult animals observed in present study
were similar to those previously described [18].

According to Gulyas at al. [15] two major types
of CR-ir GABAergic neurones have been distinguished
in the rat hippocampus, i.e. spiny and aspiny. The
latter form symmetrical synaptic contacts exclusively
on GABAergic dendrites. The unique connectivity of
these cells may enable them to play a crucial role in
generation of synchronous, rhythmic hippocampal
activity by controlling other interneurones terminat-
ing on a different dendritic and somatic compart-
ment of principal cells [9, 14, 15].

The spiny CR-ir cells form a distinct population of
inhibitory non-pyramidal cells of hilus and CA3 sec-
tor; they influence the activity of dentate granular
cells, hilar and CA3 pyramidal neurones [18, 25] and
may have a specialised function such as synchronising
the activity of CA3 pyramidal cells [16, 26]. Spiny
CR-ir cells are innervating mainly by mossy fibres
(glutamatergic afferents originating exclusively from
granule cells [16, 36]). Moreover these neurones pre-

sumably receive their synaptic input through the
perforant path [39, 39, 40] and may exert feed-for-
ward inhibition on the dendrites of principal cells
that may also receive input from the perforant path-
way. Therefore, this neuronal population may influ-
ence the susceptibility of dendrites of hippocampal
principal neurones (both granule and pyramidal) to
neocortical input [26]. Additionally, the calretinin is
expressed in transitory sub-population, such as Cajal-
Retzius cells. This suggests that calretinin could play
an important role in the developmental processes
that take place over a limited period of time [18].
According to Soriano et al. [33], hippocampal Cajal-
Retzius cells may play a crucial role in the guidance
of axons of the perforant path.

According to our results, VAChT-positive puncta
(considered to be axon terminals, although they may
be transversely cut fibres [13]) were observed in the
hippocampus already at early postnatal period, ini-
tially as puncta, later as puncta and fine varicose pro-
cesses. These data differ from those of Gould et al.,
[13] who described that cholinergic fibres deriving
from the medial septum/diagonal band complex were
not detectable in the hippocampus before P10 [13].
The discrepancy between the results of Gould et al.
[13] and our findings seems to be due to the usage of
different antibodies as markers of cholinergic fibres:
Gould et al. [13] utilised an antibody against the en-
zyme synthesising acetylocholine (ChAT), whereas in
our study an antibody against vesicular acetylcholine
transporter (VAChT) was applied.

The results of the present study suggest that the
cholinergic innervation of calretinin-immunopositive
hippocampal neurones both during development as
well as in adult are rather scanty. Even though on P0
both CR-ir neurones as well as VAChT immunoreac-
tive elements were visible in hippocampus proper
and in dentate gyrus until P4 they formed synaptic
contact only sporadically. VAChT-positive endings
were observed mainly on CR-ir somata, rarely on pro-
cesses. Due to the different physiological properties
of these types of endings (regulation of action po-
tential firing by somatic synapses and influence effi-
cacy of afferents by dendritic synapses [28]),
perikarial contact may exert a more rapid and po-
tent effect on the cell than dendritic inputs do [7,
35]. Therefore, despite the low number of cholin-
ergic endings on the CR-ir neurones, their influence
on the cell may be fairly significant. However, the
sub-population of cells forming sparse synaptic con-
tact is smaller - so the total effect of cholinergic af-
ferents upon CR-it neurones seems to be small.
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The present findings clearly demonstrate that both
during development as well as in adult stage, the
calretinin-containing neurones in the rat hippocam-
pus form only sparse synaptic contact with VAChT-ir
terminals. They suggest that cholinergic innervation
should not be crucial for the functioning of CR-ir cells
- probably they remain under the greater influence of
a system other than the cholinergic system.
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