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In three human foetuses aged 15, 17, and 23 weeks the number of axons
surrounded by single Schwann cells was counted. These Schwann cell/axon com-
plexes form the Schwann units. The largest Schwann units in the foetus aged
15 weeks contained 232 axons, in the foetus of 17 weeks the number was
140 and in the foetus of 23 weeks the largest units contained 65 axons.
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INTRODUCTION
In the mammalian peripheral nervous system the

neural crest is a multipotent precursor population
that gives rise to a wide variety of cell types includ-
ing neurons and Schwann cells [5]. Schwann cells
are the PNS counterpart of oligodendrocytes. They
surround all peripheral axons, whether myelinated
or not, while oligodendrocytic processes do not sur-
round unmyelinated axons in the CNS.

The process of a single Schwann cell may sur-
round many unmyelinated axons. Finally, Schwann
cells are covered by a basal lamina, whereas oligo-
dendrocytes are not. The co-ordinated differentia-
tion of axons and myelin-forming cells and the se-
lective elimination of axons, dendrites, and synaptic
connections without the death of parent neurons re-
quire reciprocal interactions between neurons and glial
cells [18, 21]. In higher mammals glial cells vastly out-
number neurons and reciprocal signalling between
neurons and glial cells forms the functional units dur-
ing the development of the nervous system [16].

Schwann cells are the principal glial cells in the
peripheral nervous system. Schwann cell precursors
give rise to two mature Schwann cell forms, namely
myelin-forming and non-myelin-forming Schwann
cells [12, 14]. In the adult each myelinating Schwann

cell surrounds a single axon and forms a myelin
sheath. Each non-myelin-forming Schwann cell sur-
rounds many axons in troughs along its surface.
Another type of non-myelin-forming cell is found at
the neuromuscular junction and this cell is known as
a terminal or perisynaptic Schwann cell [8]. As devel-
opment proceeds, axon bundles are progressively sub-
divided and segregated by premyelinating Schwann
cell processes, and a one-to-one Schwann relationship
of cell to axion is eventually established prior to myeli-
nation [28]. Premyelinating Schwann cells exit the cell
cycle, synthesise a basement membrane and begin to
myelinate associated axons [28]. This occurs in human
foetuses around the 13th week [26, 27]. Bundles of
axons surrounded by one Schwann cell can be re-
ferred to as a Schwann unit.

Several investigations have described a consecu-
tive decrease of axons in Schwann units with the
advancement of development [2, 3, 6, 7, 19, 20, 23,
24, 25]. The aim of the present paper is to count the
axons in the largest Schwann units in the foetal
phrenic nerve.

MATERIAL AND METHODS
The upper thoracic parts of the phrenic nerves

were removed in three human foetuses of 135, 149



254

Folia Morphol., 2005, Vol. 64, No. 4

and 220 mm C-R length. The ages of the foetuses
investigated were 15, 17, and 23 postovulatory
weeks. Immediately after operation the nerves were
fixed by immersion in cooled 1.2% glutaraldehyde
for one hour. The material was then placed for two
hours in 2% glutaraldehyde buffered to pH 7.4 with
cacodylate. The nerve pieces were rinsed in cacody-
late buffer for 24 hours and postfixed in 1% osmi-
um tetroxide. Thin and semi-thin sections were
stained with uranyl acetate and lead citrate. The thin
sections were examined and photographed in an
electron microscope and montages were then con-
structed. All axons in the montage were counted and
the axon diameters measured. The measurements
were made using a Leica imaging system.

RESULTS

Foetus of 135 mm C-R length (15 weeks)

The processes of single Schwann cells surround-
ed many axons, forming Schwann units. The
Schwann cells and their processes were covered by
a basal lamina. The largest Schwann units contained
up to 232 axons (Fig. 1). The diameter of the axons
in a particular unit varied from 0.1 to 2.0 µm (Fig. 2).
Nerve fascicles were surrounded by distinct perineu-
rium, which at this stage of development is not
a regular laminar structure (Fig. 3). The endoneuri-
um contains fascicles of collagenous fibres, glyco-
gen granules, and isolated fibroblasts (Fig. 4, 5). The
processes of Schwann cells invaded the nerve fasci-
cles, dividing them into smaller units, some of which
contained two or three axons (Figs. 3–5). In the foe-
tus investigated single axons surrounded by Schwann
cell processes were observed (Fig. 3–6). The first turns
of these processes were thick and irregular. The di-
ameter of the myelinating axons ranged from 0.5 to
2.0 µm.

Foetus of 149 mm C-R length (17 weeks)

In this foetus the following important develop-
mental events were observed:
— a decrease in the number of axons in a Schwann

unit;
— the formation of compact myelin;
— an increase in the number of myelinating fibres.

The largest Schwann units contained 140 axons.
Most units contained 30 and 18 axons (Fig. 7). Many
axons were at the onset of myelination (Fig. 8). Well
myelinated fibres were present, containing major
dense lines and intraperiod lines with compact mye-
lin (Fig. 9). Schmidt-Lanterman clefts were also

present in these fibres (Fig. 9). The number of mye-
lin lamellae may reach 11. The diameters of axons in
a Schwann unit varied from 0.2 to 1.5 µm. The di-
ameters of the myelinating axons ranged from 0.6
to 2 µm. The perineurium showed a regular laminat-
ed structure.

Foetus of 220 mm C- R length (23 weeks).

In this period of development the number of my-
elinated fibres in the phrenic nerve increased. The
largest Schwann units had 65 axons (Fig. 10). The
nerve fibres were in various phases of myelinogene-
sis (Fig. 11, 12). The diameter of unmyelinated fi-
bres varied from 0.3 to 2 µm. Myelinated fibres had
diameters ranging from 0.8 to 3 µm. The perineuri-
um presented a laminar structure with blood vessels
and collagenous fibres (Fig. 13). Collagenous fibres
and glycogen granules were present in the endo-
neurium.

DISCUSSION
During development Schwann cells migrate along

bundles of axons, proliferate, and synthesise a basal
lamina consisting of laminins, fibronectin, type IV
collagen and other components [13]. The b1 integrins
present on undifferentiated Schwann cells mediate
the Schwann cell/basal lamina interactions which are
essential for myelinogenesis [4]. Merosin (laminin
-2), which is a substrate adhesion molecule produced
by Schwann cells [15], is implicated in peripheral
myelinogenesis. It is present in the endoneurial base-
ment membrane of developing and mature peripher-
al nerves [11] and promotes Schwann cell migration
[1]. By 11 weeks Schwann cells in human foetal nerves
express b4 integrins and are surrounded by continu-
ous basal laminae [11]. This coincides with our earlier
studies on the myelination of human peripheral
nerves, in which the onset of myelin formation was
found at the end of the 13th week [26].

The major integral membrane protein of peri-
pheral nerve myelin is protein zero (P0), a member of
a very large immunoglobulin superfamily [17]. This
protein makes 40–80% of the protein complement
of peripheral nerve myelin. The interactions between
the extracellular domains of P0 molecules expressed
on one layer of the myelin sheath and those of the
apposing layer yield a characteristic regular perio-
dicity that can be seen as the intraperiod line repre-
senting the extracellular apposition of the myelin
bilayer as it wraps around itself [10]. In peripheral
nerves, although other molecules are present in small
quantities in compact myelin (for example, MAG
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Figure 1. The left phrenic nerve in a human foetus of the 15th week. × 17500. Ax — axon, Scp — Schwann cell process.

PMPZZ) and may have important functions, compac-
tion is accomplished solely by P0–P0 interactions at
both extracellular and intracellular surfaces [9, 22].

It is known that the onset of myelin formation
is preceded by axon isolation and a relationship of

one axon to one Schwann cell [3, 6, 7]. Compact
myelin formation is observed in human foetuses by
the 17th week. This was found in our earlier studies
on foetal nerves in which foetal age was precisely
established [2, 23–27].
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Figure 2. The left phrenic nerve from a human foetus of the 15th week. × 24500. Ax — axon, Sc — Schwann cell, Bl — basal lamina, P — perineurium.

The number of nerve processes surrounded by
one Schwann cell is reduced with the advancement
of development. This was confirmed in the present
study. It was also observed that in the investigated
foetuses aged between 17 and 23 weeks myelina-
tion progresses rapidly.

Ochoa [19] observed in the sural nerve of a hu-
man foetus of 9 weeks 800 axons bounded by one
Schwann cell, and Gamble [6] found that in a foetus
at 11 weeks of menstrual age the largest bundles
contained more than 450 unmyelinated axons en-
veloped in one Schwann cell.
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Figure 3. Axons (Ax) at the onset of myelination in the left phrenic nerve in a human  foetus of the 15th week. × 17500. P — perineurium,
Sc — Schwann cell.
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Figure 4. The left phrenic nerve in a human foetus of the 15th week. × 10000. Ax — axon, Col — collagen.
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Figure 5. The left phrenic nerve in a human foetus of the 15th week. × 18000. Ax — axon, Col — collagen, Sc — Schwann cell.
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Figure 6. Axon (Ax) at the early stage of myelination in the left phrenic nerve in a human foetus of the 15th week. × 79000. Col — collagen.
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Figure 7. The phrenic nerve in a human foetus of the17th week. × 35000. Ax — axon, Scp — Schwann cell process.

7
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Figure 8. The right phrenic nerve in a human foetus of the 17th week. × 42000. Ax — axon, Col — collagen, Sc — Schwann cell.



263

Malgorzata Bruska et al., Human foetal phrenic nerve

Figure 9. The phrenic nerve in a human foetus of the 17th week. × 56000. Ax — axon, My — myelin, Scp — Schwann cell process.
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Figure 10. Myelinated fibres of the left phrenic nerve in a human foetus of the 23rd week. × 10000. Ax — axon, Col — collagen, My — myelin.
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Figure 11. The left phrenic nerve in a human foetus of the 23rd week. × 8400. Ax — axon, Fb — fibroblast, My — myelin, P — perineurium.
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Figure 12. Myelinated fibres of the left phrenic nerve in a human foetus of the 23rd week. × 15500. Ax — axon, Col — collagen, Sc — Schwann cell.
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Figure 13. The left phremic nerve in human foetus of 23rd week. × 12500. Ax — axon, My — myelin, P — perineurium, Sc — Schwann cell.
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