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The thickness of the ventral midline of the spinal cord was determined in
9 human embryos aged five weeks (developmental stages 13–15). This part of
the spinal cord consists of floor plate, mantle and marginal layers. The floor
plate ependymal cells form pseudostratified columnar epithelium. The thick-
ness of the investigated structure varied from 20 to 50 micrometers at different
levels of the spinal cord. (Folia Morphol 2008; 67: 205–208)
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INTRODUCTION
Differentiation of neuronal types and the estab-

lishment of appropriate connections between neu-
rons and their targets are critical phases of the early
development of the nervous system, and these
events form the basis for the proper operation of
the mature nervous system. Cells at the midline of
the neural tube control axon projections and influ-
ence motor neurons and several types of interneu-
ron differentiation [2, 12, 16].

The formation of precise neuronal circuits de-
pends upon the ability of the growth cone, which
guides axons, to navigate over a long distance. The
guidance cues exist in either diffusible or cell sur-
face-associated forms [7, 21]. Growth cone-associ-
ated cell surface receptors interpret these signals as
positive/attractive (netrin) or negative/repulsive (slit
and semaphorin proteins) forces [15, 24].

The midline of the developing central nervous
system represents an important choice point for
pathfinding axons [8]. Recent experiments show that
axial mesoderm can stimulate formation of specific
ventral cell types in the spinal cord, including floor
plate and motor neurons. Generation of these cell
types is dependent on the secreted signalling mole-

cule Sonic hedgehog (Shh), which is produced by
axial mesodermal midline cells of the notochord. Shh
signalling from the notochord induces development
of the ventral midline cells and the floor plate which
also expresses Shh together with other genes [4].

The ependymal lining floor plate has been inves-
tigated in ultrastructural and cytochemical studies
on the human spinal cord by Gamble [3], Malinsky
and Brichova [13] and Tanaka et al. [20]. In the
present study we investigated the thickness and his-
tological structure of the ventral midline of the spi-
nal cord in human embryos aged five weeks.

Although morphological criteria do not permit
delimination of the ventral midline cells and the floor
plate in the transverse plane, it is possible to mea-
sure the thickness of the ventral midline cells of the
spinal cord in the sagittal plane.

MATERIAL AND METHODS
A study was made on human embryos aged five

weeks (developmental stages 13, 14 and 15, Table 1).
The embryos were from the Collection of the De-
partment of Anatomy of the University of Medical
Sciences in Poznań. All embryos were embedded
in toto in paraplast and serially sectioned in the
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horizontal plane. Measurements of the ventral mid-
line of the spinal cord were made on sections from
various levels of the spinal cord with the aid of
a Leica Olympus Microscope using program AxioVision LE
with the Canon Module. The thickness of the ventral
midline was determined together with the floor plate.

The structure of the ventral midline of the spinal
cord was also investigated in histological sections.

RESULTS
In embryos at stage 13 the mantle layer of the

ventral midline of the spinal cord consists of 4 rows
of cells with oval nuclei. The ependyma at this part
is formed of columnar cells with basally located nu-
clei. The marginal layer is clearly visible (Fig. 1). The
thickness of the ventral midline in the embryos stud-
ied varied from 20 to 40 mm at different levels of
the spinal cord and was greater in the cervical and
upper thoracic segments than in the lumbar seg-
ment of the spinal cord (Table 2).

In embryos at stage 14 the mantle layer of the
ventral midline is thicker than that of embryos in
stage 13 and consists of 5 or 6 rows of cells (Fig. 2).
The ependymal layer consists of pseudostratified
columnar epithelium. In the mantle layer the cross-
ing commissural axons are visible (Fig. 3). The thick-
ness of this ventral midline cells varies from 30 to
50 mm (Table 2).

In embryos at stage 14 the central canal of the
spinal cord diminishes and the anterior horns are
well developed. The structure and thickness of the
ventral midline of the spinal cord are similar to that
of embryos at stage 14 (Fig. 4).

DISCUSSION
The ventral midline cells of the central nervous

system are important in the neural tube, playing
a role in the differentiation part of motor neurons

and the establishment of commissural projections
[2, 14]. The differentiation of neurons in the ventral
neural tube is dependent on inductive signals from
the notochord and floor plate, which is formed of
specialized glia in a narrow strip at the ventral mid-
line [1, 14, 17, 18, 22].

According to O’Rahilly and Müller [16], the floor
plate is formed by the ventromedial cells of the epi-
notochordal part of the neural plate or tube and is
induced by the notochord. It differs regionally. Cells
in the midbrain can induce the production of dopam-
inergic neurons, whereas those of the rhomben-
cephalon develop into the septum medullae.

According to many authors, beginning with the
descriptions of His [5], the floor plate is made up of
columnar ependymal cells that span the width of the
neural tube at its ventral midline. The anterior bound-
ary of the floor plate has been placed at the hind-
brain-midbrain junction [9, 10] but there are several

Figure 1. Horizontal section of the spinal cord of an embryo at
stage 13. Staining with toluidine blue, ¥ 400; E — ependymal of
the floor plate, M — mantle layer, m — marginal layer.

Table 1. Crown-rump length, developmental stage, and age in days of the embryos examined

Catalogue C-R length Developmental Age in postovulatory Plane of
number  [mm]  stage  days section

B 171 4 13 32 Horizontal
B 194 6 13 32 Horizontal
B 218 4.5 13 32 Horizontal

A 19 7 14 32 Horizontal
B 207 6 14 32 Horizontal
P 41 5 14 33 Horizontal

B 115 8 15 33 Horizontal
PJK 20 7 15 33 Horizontal
PJK 21 10 15 37 Horizontal
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reasons for believing that this plate extends through
the midbrain into the posterior diencephalon and
ends near the mammillary region [2, 11, 17, 18].

In the present study it was shown that in the early
embryonic human spinal cord the ventral midline of

the spinal cord consists of ependymal lining cells,
mantle, and marginal layers. The thickness of the part
of the spinal cord under investigation slightly increas-
es at stages 14 and 15, and during these stages com-
missural axons are visible crossing the marginal layer.

Table 2. Thickness of the ventral midline of the spinal cord in the embryos examined

Catalogue number Developmental Level of section Thickness in micrometers
of embryo stage

B 171 13 Upper thoracic 40
Lumbar 30

B 194 13 Cervical 30
Lower thoracic 20

B 218 13 Upper thoracic 20
Lower thoracic 20

Lumbar 20

P 41 14 Lower cervical 40
Upper thoracic 40
Lower thoracic 30

A 19 14 Upper thoracic 30
Lower thoracic 40

B 207 14 Cervical 50
Upper thoracic 50

Lumbar 40

B 115 15 Cervical 40
Upper thoracic 40
Lower thoracic 40

PJK 21 15 Cervical 30
Upper thoracic 30
Lower thoracic 30

PJK 20 15 Cervical 50
Upper thoracic 40
Lower thoracic 40

Figure 2. Horizontal section of the spinal cord in an embryo at
stage 14. Bodian’s protargol, ¥ 100; A — anterior horn,
B — ventral midline cells.

Figure 3. Horizontal section through the ventral part of the spinal
cord in an embryo at stage 14. Bodian’s protargol, ¥ 400; E —
ependyma of the floor plate, M — mantle layer, m — marginal
layer with commissural fibres.
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Sturrock [19] in mouse, Yoshioka and Tanaka in
rats [23] and Gamble [3] and Malinsky and Brichova [13]
in humans found that the floor plate ependymal cells
differentiate during an earlier stage of embryonic
development and are closely associated with the
growth of decussating nerve fibres in the marginal
layer, as was observed in our study. Midline-associ-
ated glial cells appear to be a source of contact-
dependent or diffusible guidance cues for commis-
sural axons [6].

REFERENCES
1. Briscoe J, Ericson J (2001) Specification of neuronal fates

in the ventral neural tube. Curr Opin Neurobiol, 11:
43–49.

2. Colamarino SA, Tessier-Lavigne M (1995) The role of
the floor plate in axon guidance. Annu Rev Neurosci,
18: 497–529.

3. Gamble HJ (1969) Electron microscope observations on
the human fetal and embryonic spinal cord. J Anat,
104: 435–453.

4. Götz K, Briscoe J, Ruther U (2005) Homozygous Ft em-
bryos are affected in floor plate maintenance and ven-
tral neural tube patterning. Dev Dyn, 233: 623–630.

5. His W (1888) Zur Geschichte des Gehirns, sowie der
zentralen und peripherischen Nervenbahnen beim men-
schlichen Embryo. Abh Math Phys Kl Konigl Sachsis-
chen Geselschf Wiss, 8: 341–392.

6. Kadison SR, Murakami F, Matise MP, Kaprielian Z (2006)
The role of floor plate contact in the elaboration of
contralateral commissural projections within the em-
bryonic mouse spinal cord. Dev Biol, 296: 499–513.

7. Kaprielian Z, Imondi R, Runko E (2000) Axon guidance
at the midline of the developing CNS. Anat Rec (New
Anat), 261: 176–197.

Figure 4. Horizontal section of the spinal cord in an embryo at
stage 15. Haemotoxylin and eosin, ¥100; A — anterior horn,
B — ventral midline cells, C — spinal ganglion.

8. Kaprielian Z, Runko E, Imondi R (2001) Axon guidance
at the midline choice point. Dev Dyn, 221: 154–181.

9. Kingsbury BF (1920) The extent of the floor plate of His
and its significance. J Comp Neurol, 32: 113–135.

10. Kingsbury BF (1930) The developmental significance of
the floor-plate of the brain and spinal cord. J Comp
Neurol, 50: 177–207.

11. Klar A, Baldassare M, Jessel TM (1992) F-spondin:
a gene expressed at high levels in the floor plate
encodes a secreted protein that promotes neural cell
adhesion and neural expression. Cell, 69: 95–100.

12. Maghadam KS, Chen A, Heathcote R (2003) Establish-
ment of a ventral cell fate in the spinal cord. Dev Dyn,
227: 552–562.

13. Malinsky J, Brichova H (1967) Fine structures of ependy-
ma in spinal cord of human embryos. Folia morph (Pra-
gue), 15: 68–78.

14. Mambetisaeva ET, Andrews W, Cumurri L, Annan A,
Sundaresan U (2005) Robo family of proteins exhibit
differential expression in mouse spinal cord and Robo-
Slit interaction is required for midline crossing in ver-
tebrate spinal cord. Dev Dyn, 233: 41–51.

15. Mitchell KJ, Doyle JL, Serafini T, Kennedy TE, Tessier-
-Lavigne M, Goodman CS, Dicson BJ (1996) Genetic
analysis of Netrin genes in Drosophila: Netrins guide
CNS commissural axons and peripheral motor axons.
Neuron, 17: 203–215.

16. O’Rahilly R, Müller F (2006) The embryonic human brain:
an atlas of developmental stages. Wiley-Liss, Hoboken,
NJ.

17. Placzek M (1995) The role of the notochord and floor
plate in inductive interactions. Curr Opin Genet Dev,
5: 499–506.

18. Placzek M, Jessel TM, Dodd J (1993) Induction of floor
plate differentiation by contact-dependent, homoge-
netic signals. Development, 117: 205–218.

19. Sturrock RR (1981) An electron microscopic study of
the development of the ependyma of the central canal
of the mouse spinal cord. J Anat, 132: 119–136.

20. Tanaka O, Yoshioka T, Shinohara H (1988) Secretory
activity in the floor plate neuroepithelium of the de-
veloping human spinal cord: morphological evidence.
Anat Rec, 222: 185–190.

21. Tessier-Lavigne M, Goodman CS (1996) The molecular
biology of axon guidance. Science, 274: 1123–1133.

22. Yamada T, Placzek M, Tanaka H, Dodd J, Jessel TM
(1991) Control of cell pattern in the developing ner-
vous system: polarizing activity in the floor plate and
notochord. Cell, 64: 635–647.

23. Yoshioka T, Tanaka O (1989) Ultrastructural and cytoche-
mical characterization of the floor plate ependyma of the
developing rat spinal cord. J Anat, 165: 87–100.

24. Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M (2000)
Squeezing axons out of the gray matter: a role for slit
and semaphorin proteins from midline and ventral spi-
nal cord. Cell, 102: 363–375.


