Intraluminal septation of the basilar artery: incidence and potential clinical significance

R.S. Tubbs¹, ², W.A. Shaffer³, M. Loukas⁴,⁵, M.M. Shoja⁶, M.R. Harrigan¹, W.J. Oakes¹

¹Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham, AL, USA
²Department of Cell Biology, University of Alabama at Birmingham, AL, USA
³University of Alabama School of Medicine, AL, USA
⁴Department of Anatomical Sciences, St. George’s University, Grenada, West Indies
⁵Department of Education and Development, Harvard Medical School, Boston, MA, USA
⁶Tuberculosis and Lung Disease Institute, Tabriz Medical University, Tabriz, Iran

[Received 14 December 2007; Accepted 17 January 2008]

Variations in the cerebrovascular tree can increase surgical or interventional morbidity. To date, only scant comments are to be found in the literature regarding intraluminal variations of the basilar artery. To further elucidate such anatomy, a cadaveric study was performed.

One hundred and fifty human brains were evaluated for the present study. The basilar artery was identified in each and sectioned longitudinally to observe for the presence of intraluminal septa.

One specimen (0.67%) was identified that harbored an intraluminal septum of the basilar artery. This wall was within the proximal basilar artery and measured 3 mm by 1.5 mm. No specimen was found to have other anomalies of the basilar artery and in the single specimen with an intraluminal septum no signs of intracranial pathology were seen.

Although seemingly rare, septation of the basilar artery can be found. Knowledge of such an intraluminal vascular variation may be important during invasive and minimally invasive procedures. (Folia Morphol 2008; 67: 193–195)

Key words: anatomy, neurosurgery, anomalies, variation, vasculature

INTRODUCTION

Both Hyrtl [5] and Sharpey et al. [13] have referred to Davy’s description of the occasional intraluminal septation of the basilar artery. However, the “occasional” presence of such partitions was not defined. Lang [7] stated that such a dividing wall within the basilar artery as reported by Davy could be interpreted as evidence of the separation of cerebral arteries that have developed side by side (i.e. left and right vertebral arteries). Other variations of the basilar artery include, splitting of the basilar artery into two vessels that reunite (fenestration) [1], connection to the internal carotid via persistent fetal vessels (e.g. the trigeminal artery) [17], two parallel traveling vertebral arteries over the clivus that are united across the midline by several anastomotic vessels, and ectatic basilar arteries.

MATERIAL AND METHODS

One hundred and fifty formalin-fixed adult cadaveric brains were used for this study. The brains were harvested from 82 male and 68 female specimens with a mean age of 71 years (range 50 to 101 years). For each specimen the brain was removed in
a routine manner. After the calvaria had been re-
moved with an oscillating bone saw, the dura was
opened and, by means of manual subfrontal retra-
ction, the cranial nerves and internal carotid artery
were transected with scissors in an anteroposterior
direction. The tentorium cerebelli was cut from its
petrous attachment with a scalpel and the spinal
cord and vertebral arteries were transected with
a scalpel introduced through the foramen magnum.
Brains were stored in a formalin solution until dis-
section. With the inferior surface of the brain in view,
the basilar arteries were identified and, usually af-
ter removal of the remnants of Liliquist’s membrane,
the basilar arteries were cut open in their midline
with dissecting scissors and observations made of
their internal surface. If magnification was neces-
sary, 2.5 × loups were used. Measurements were
made with calipers and rulers.

RESULTS
One male specimen (0.67%), aged 68 at death
resulting from colon carcinoma, was identified that
harbored an intraluminal septum of the basilar ar-
tery (Fig. 1). The length and width of the septation
were 3 mm and 1.5 mm, respectively. This septation
occurred 4 mm cranial from the fusion of the left and
right vertebral arteries. The length of this septated
basilar artery was 3.8 cm and its diameter was 5 mm.
This specimen had no known history of vertebrobasi-
lar insufficiency or stroke. No specimen was found to
have other anomalies of the basilar artery and in the
single specimen with an intraluminal septum no signs
were seen of intracranial pathology such as aneurysm.
Additionally, no compensatory enlargement of other
parts of the circle of Willis was observed.

DISCUSSION
As stated by Berry and Anson [2], the embryolo-
gy of the basilar artery has been but scantily dealt
with in most textbooks and the subject is often sum-
marily dismissed. However, some authors have made
observations of the early development of this ves-
sel. The primitive blood supply to the brain was via
the internal carotid arteries. As the brain evolved
and became larger, especially posteriorly, this sup-
ply no longer sufficed, and thus an additional arte-
rial supply developed from the subclavians by way
paired longitudinal neural arteries appear along the
hindbrain and at the 4 to 8 mm stage they coalesce
to form the basilar artery. These longitudinal arteries
border on the ventral midline avascular strip and are
connected laterally at multiple locations with the
primitive hindbrain arterial plexus [14]. Cranially,
these vessels anastomose with the primitive trigemi-
nal artery and caudally with the first cervical segment-
tal artery [11]. Fusion of these longitudinal neural ves-
sels to form the basilar artery occurs in a caudal to
cranial direction at approximately the 5th fetal week.
During the first phase of fusion, the basilar artery
surrounds numerous cell islands. The persistence of
such islands may hinder proper fusion of the longitudi-
nal neural arteries and may cause fenestration or
segmental duplication of the basilar artery. De Caro
et al. [3] have posited that some cases of fenestra-
tion of the basilar artery may be caused by persist-
tence of the cranial part of a primitive lateral verte-
brobasilar anastomosis rather than by incomplete fu-
sion of the paired longitudinal arteries. Interestingly,
in some animals, such as the testudo (tortoise), the
basilar artery remains doubled for its whole course
beneath the medulla oblongata [2].

Lang [7] described “island” formation within the
basilar artery in 2% of his material and large island
formation (i.e. an almost duplicated basilar artery)
in 0.3% of his specimens. Such fenestrations of the
basilar artery may be angiographically occult and
seen only on postmortem studies, as other series
have reported basilar artery fenestrations in 1.33%
of dissections and 0.12% of angiograms [9, 10].
Parenthetically, basilar artery fenestrations have
a greater prevalence in the caudal one half of this
vessel [14]. Although the term “fenestrations” has
been used interchangeably with “partial duplica-
tion”, complete duplication of the basilar artery is
extremely rare [16]. Some have found that the sub-
endothelium is aligned differently in such vessels and
that this may be due to hemodynamic alterations in
blood flow [4]. Fenestration of cerebral vessels is sometimes misinterpreted as dissections or thromboses [12]. We would suggest that the septation seen in the one cadaveric specimen reported herein represents a forme fruste of such fenestrations, incomplete fusion of the fetal longitudinal vessels that will become the basilar artery. With current diagnostic methods, however, such intraluminal septa would be difficult to identify in vivo. A calcified intravascular septum would probably be apparent on a fine-cut computed tomography (CT) scan such as CT angiography, and newer technologies, such as virtual arterial endoscopy that combines perspective volume rendering and interactive visualization, may prove useful in the future [10]. Whether or not such septations predispose an individual to increased risk of intracranial pathology such as aneurysm is speculative. Clinically however, the literature suggests an increased incidence of aneurysm formation in patients with fenestration or duplication of the basilar artery [14, 18].

The clinician may also wish to consider such intraluminal septations as seen in our single specimen in procedures such as the use of endovascular coils to treat basilar tip aneurysms [6, 15] or during the placement of intravascular stents into the basilar artery [8].

CONCLUSION

To our knowledge, the incidence and anatomy of intraluminal basilar artery septation has not been reported. The true clinical consequences of such a variation are not clear, but awareness of this form of anatomical partition within this vessel may be important to neurosurgeons and neurointerventionalists.

REFERENCES